A deep learning approach to the probabilistic numerical solution of
path-dependent partial differential equations
- URL: http://arxiv.org/abs/2209.15010v1
- Date: Wed, 28 Sep 2022 14:34:58 GMT
- Title: A deep learning approach to the probabilistic numerical solution of
path-dependent partial differential equations
- Authors: Jiang Yu Nguwi and Nicolas Privault
- Abstract summary: PPDE solutions can be approximated by a probabilistic representation, implemented in the literature by the estimation of conditional expectations using regression.
We overcome this limitation by the use of deep learning methods, and we show that this setting allows for the derivation of the bounds of error on the approximation of conditional expectations.
In comparison with other deep learning approaches, our algorithm appears to be more accurate, especially in large dimensions.
- Score: 1.09650651784511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work on Path-Dependent Partial Differential Equations (PPDEs) has
shown that PPDE solutions can be approximated by a probabilistic
representation, implemented in the literature by the estimation of conditional
expectations using regression. However, a limitation of this approach is to
require the selection of a basis in a function space. In this paper, we
overcome this limitation by the use of deep learning methods, and we show that
this setting allows for the derivation of error bounds on the approximation of
conditional expectations. Numerical examples based on a two-person zero-sum
game, as well as on Asian and barrier option pricing, are presented. In
comparison with other deep learning approaches, our algorithm appears to be
more accurate, especially in large dimensions.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Constrained or Unconstrained? Neural-Network-Based Equation Discovery from Data [0.0]
We represent the PDE as a neural network and use an intermediate state representation similar to a Physics-Informed Neural Network (PINN)
We present a penalty method and a widely used trust-region barrier method to solve this constrained optimization problem.
Our results on the Burgers' and the Korteweg-De Vreis equations demonstrate that the latter constrained method outperforms the penalty method.
arXiv Detail & Related papers (2024-05-30T01:55:44Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Error Bounds for Flow Matching Methods [38.9898500163582]
Flow matching methods approximate a flow between two arbitrary probability distributions.
We present error bounds for the flow matching procedure using fully deterministic sampling, assuming an $L2$ bound on the approximation error and a certain regularity on the data distributions.
arXiv Detail & Related papers (2023-05-26T12:13:53Z) - VI-DGP: A variational inference method with deep generative prior for
solving high-dimensional inverse problems [0.7734726150561089]
We propose a novel approximation method for estimating the high-dimensional posterior distribution.
This approach leverages a deep generative model to learn a prior model capable of generating spatially-varying parameters.
The proposed method can be fully implemented in an automatic differentiation manner.
arXiv Detail & Related papers (2023-02-22T06:48:10Z) - Double logistic regression approach to biased positive-unlabeled data [3.6594988197536344]
We consider parametric approach to the problem of joint estimation of posterior probability and propensity score functions.
Motivated by this, we propose two approaches to their estimation: joint maximum likelihood method and the second approach based on alternating alternating expressions.
Our experimental results show that the proposed methods are comparable or better than the existing methods based on Expectation-Maximisation scheme.
arXiv Detail & Related papers (2022-09-16T08:32:53Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - A maximum-entropy approach to off-policy evaluation in average-reward
MDPs [54.967872716145656]
This work focuses on off-policy evaluation (OPE) with function approximation in infinite-horizon undiscounted Markov decision processes (MDPs)
We provide the first finite-sample OPE error bound, extending existing results beyond the episodic and discounted cases.
We show that this results in an exponential-family distribution whose sufficient statistics are the features, paralleling maximum-entropy approaches in supervised learning.
arXiv Detail & Related papers (2020-06-17T18:13:37Z) - Model Reduction and Neural Networks for Parametric PDEs [9.405458160620533]
We develop a framework for data-driven approximation of input-output maps between infinite-dimensional spaces.
The proposed approach is motivated by the recent successes of neural networks and deep learning.
For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology.
arXiv Detail & Related papers (2020-05-07T00:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.