DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm
- URL: http://arxiv.org/abs/2210.00802v3
- Date: Fri, 26 Apr 2024 07:23:20 GMT
- Title: DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm
- Authors: Kyriakos Schwarz, Alicia Pliego-Mendieta, Amina Mollaysa, Lara Planas-Paz, Chantal Pauli, Ahmed Allam, Michael Krauthammer,
- Abstract summary: We introduce a Graph Neural Network (textitGNN) based model for drug synergy prediction.
In contrast to conventional models, our GNN-based approach learns task-specific drug representations directly from the graph structure of the drugs.
Our work suggests that learning task-specific drug representations and leveraging a diverse dataset is a promising approach to advancing our understanding of drug-drug interaction and synergy.
- Score: 0.521420263116111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drug synergy arises when the combined impact of two drugs exceeds the sum of their individual effects. While single-drug effects on cell lines are well-documented, the scarcity of data on drug synergy, considering the vast array of potential drug combinations, prompts a growing interest in computational approaches for predicting synergies in untested drug pairs. We introduce a Graph Neural Network (\textit{GNN}) based model for drug synergy prediction, which utilizes drug chemical structures and cell line gene expression data. We extract data from the largest available drug combination database (DrugComb) and generate multiple synergy scores (commonly used in the literature) to create seven datasets that serve as a reliable benchmark with high confidence. In contrast to conventional models relying on pre-computed chemical features, our GNN-based approach learns task-specific drug representations directly from the graph structure of the drugs, providing superior performance in predicting drug synergies. Our work suggests that learning task-specific drug representations and leveraging a diverse dataset is a promising approach to advancing our understanding of drug-drug interaction and synergy.
Related papers
- ALNSynergy: a graph convolutional network with multi-representation alignment for drug synergy prediction [8.316187397380244]
Drug combination refers to the use of two or more drugs to treat a specific disease at the same time.
In this work, we propose ALNSynergy, a graph convolutional network with multi-representation alignment for predicting drug synergy.
arXiv Detail & Related papers (2023-11-27T15:34:14Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - ADRNet: A Generalized Collaborative Filtering Framework Combining
Clinical and Non-Clinical Data for Adverse Drug Reaction Prediction [49.56476929112382]
Adverse drug reaction (ADR) prediction plays a crucial role in both health care and drug discovery.
We propose ADRNet, a generalized collaborative filtering framework combining clinical and non-clinical data for drug-ADR prediction.
arXiv Detail & Related papers (2023-08-03T11:28:12Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - CongFu: Conditional Graph Fusion for Drug Synergy Prediction [8.939263684319263]
CongFu is a Conditional Graph Fusion Layer designed to predict drug synergy.
It achieves state-of-the-art results on 11 out of 12 benchmark datasets.
We propose an explainability strategy for elucidating the effect of drugs on genes.
arXiv Detail & Related papers (2023-05-23T20:46:17Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - HyGNN: Drug-Drug Interaction Prediction via Hypergraph Neural Network [0.0]
Drug-Drug Interactions (DDIs) may hamper the functionalities of drugs, and in the worst scenario, they may lead to adverse drug reactions (ADRs)
This paper proposes a novel Hypergraph Neural Network (HyGNN) model based on only the SMILES string of drugs, available for any drug, for the DDI prediction problem.
Our proposed HyGNN model effectively predicts DDIs and impressively outperforms the baselines with a maximum ROC-AUC and PR-AUC of 97.9% and 98.1%, respectively.
arXiv Detail & Related papers (2022-06-25T22:48:27Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - Modular multi-source prediction of drug side-effects with DruGNN [3.229607826010618]
Drug Side-Effects (DSEs) have a high impact on public health, care system costs, and drug discovery processes.
To predict their occurrence, it is necessary to integrate data from heterogeneous sources.
In this work, such heterogeneous data is integrated into a graph dataset, expressively representing the relational information between different entities.
Graph Neural Networks (GNNs) are exploited to predict DSEs on our dataset with very promising results.
arXiv Detail & Related papers (2022-02-15T09:41:05Z) - DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations [0.9854322576538699]
computational screening has become an important way to prioritize drug combinations.
DeepDDS was superior to competitive methods by more than 16% predictive precision.
arXiv Detail & Related papers (2021-07-06T08:25:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.