CongFu: Conditional Graph Fusion for Drug Synergy Prediction
- URL: http://arxiv.org/abs/2305.14517v2
- Date: Mon, 6 Nov 2023 22:29:09 GMT
- Title: CongFu: Conditional Graph Fusion for Drug Synergy Prediction
- Authors: Oleksii Tsepa, Bohdan Naida, Anna Goldenberg, Bo Wang
- Abstract summary: CongFu is a Conditional Graph Fusion Layer designed to predict drug synergy.
It achieves state-of-the-art results on 11 out of 12 benchmark datasets.
We propose an explainability strategy for elucidating the effect of drugs on genes.
- Score: 8.939263684319263
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Drug synergy, characterized by the amplified combined effect of multiple
drugs, is critically important for optimizing therapeutic outcomes. Limited
data on drug synergy, arising from the vast number of possible drug
combinations and testing costs, motivate the need for predictive methods. In
this work, we introduce CongFu, a novel Conditional Graph Fusion Layer,
designed to predict drug synergy. CongFu employs an attention mechanism and a
bottleneck to extract local graph contexts and conditionally fuse graph data
within a global context. Its modular architecture enables flexible replacement
of layer modules, including readouts and graph encoders, facilitating
customization for diverse applications. To evaluate the performance of CongFu,
we conduct comprehensive experiments on four datasets, encompassing three
distinct setups for drug synergy prediction. CongFu achieves state-of-the-art
results on 11 out of 12 benchmark datasets, demonstrating its ability to
capture intricate patterns of drug synergy. Through ablation studies, we
validate the significance of individual layer components, affirming their
contributions to overall predictive performance. Finally, we propose an
explainability strategy for elucidating the effect of drugs on genes. By
addressing the challenge of predicting drug synergy in untested drug pairs and
utilizing our proposed explainability approach, CongFu opens new avenues for
optimizing drug combinations and advancing personalized medicine.
Related papers
- Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - ALNSynergy: a graph convolutional network with multi-representation alignment for drug synergy prediction [8.316187397380244]
Drug combination refers to the use of two or more drugs to treat a specific disease at the same time.
In this work, we propose ALNSynergy, a graph convolutional network with multi-representation alignment for predicting drug synergy.
arXiv Detail & Related papers (2023-11-27T15:34:14Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm [0.521420263116111]
We introduce a Graph Neural Network (textitGNN) based model for drug synergy prediction.
In contrast to conventional models, our GNN-based approach learns task-specific drug representations directly from the graph structure of the drugs.
Our work suggests that learning task-specific drug representations and leveraging a diverse dataset is a promising approach to advancing our understanding of drug-drug interaction and synergy.
arXiv Detail & Related papers (2022-10-03T10:16:29Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
De novo drug design based on the structure of a target protein can provide novel drug candidates.
We present a generative solution named TamGent that can directly generate candidate drugs from scratch for a given target.
arXiv Detail & Related papers (2022-08-30T09:32:39Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - MOOMIN: Deep Molecular Omics Network for Anti-Cancer Drug Combination
Therapy [2.446672595462589]
We propose a multimodal graph neural network that can predict the synergistic effect of drug combinations for cancer treatment.
Our model captures the representation based on the context of drugs at multiple scales based on a drug-protein interaction network and metadata.
We demonstrate that the model makes high-quality predictions over a wide range of cancer cell line tissues.
arXiv Detail & Related papers (2021-10-28T13:10:25Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z) - A Node Embedding Framework for Integration of Similarity-based Drug
Combination Prediction [7.4517333921953215]
We propose a Network Embedding framework in Multiplex Networks (NEMN) to predict synthetic drug combinations.
Based on a multiplex drug similarity network, we offered alternative methods to integrate useful information from different aspects.
For Drug combination prediction, we found seven novel drug combinations which have been validated by external sources.
arXiv Detail & Related papers (2020-02-25T02:24:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.