ALNSynergy: a graph convolutional network with multi-representation alignment for drug synergy prediction
- URL: http://arxiv.org/abs/2311.16207v2
- Date: Sat, 12 Oct 2024 22:21:41 GMT
- Title: ALNSynergy: a graph convolutional network with multi-representation alignment for drug synergy prediction
- Authors: Xinxing Yang, Jiachen Li, Xiao Kang, Guojin Pei, Keyu Liu, Genke Yang, Jian Chu,
- Abstract summary: Drug combination refers to the use of two or more drugs to treat a specific disease at the same time.
In this work, we propose ALNSynergy, a graph convolutional network with multi-representation alignment for predicting drug synergy.
- Score: 8.316187397380244
- License:
- Abstract: Drug combination refers to the use of two or more drugs to treat a specific disease at the same time. It is currently the mainstream way to treat complex diseases. Compared with single drugs, drug combinations have better efficacy and can better inhibit toxicity and drug resistance. The computational model based on deep learning concatenates the representation of multiple drugs and the corresponding cell line feature as input, and the output is whether the drug combination can have an inhibitory effect on the cell line. However, this strategy of concatenating multiple representations has the following defects: the alignment of drug representation and cell line representation is ignored, resulting in the synergistic relationship not being reflected positionally in the embedding space. Moreover, the alignment measurement function in deep learning cannot be suitable for drug synergy prediction tasks due to differences in input types. Therefore, in this work, we propose ALNSynergy, a graph convolutional network with multi-representation alignment for predicting drug synergy. In the ALNSynergy model, we designed a multi-representation alignment function suitable for the drug synergy prediction task so that the positional relationship between drug representations and cell line representation is reflected in the embedding space. In addition, the vector modulus of drug representations and cell line representation is considered to improve the accuracy of calculation results and accelerate model convergence. Finally, many relevant experiments were run on multiple drug synergy datasets to verify the effectiveness of the above innovative elements and the excellence of the ALNSynergy model.
Related papers
- Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - CongFu: Conditional Graph Fusion for Drug Synergy Prediction [8.939263684319263]
CongFu is a Conditional Graph Fusion Layer designed to predict drug synergy.
It achieves state-of-the-art results on 11 out of 12 benchmark datasets.
We propose an explainability strategy for elucidating the effect of drugs on genes.
arXiv Detail & Related papers (2023-05-23T20:46:17Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm [0.521420263116111]
We introduce a Graph Neural Network (textitGNN) based model for drug synergy prediction.
In contrast to conventional models, our GNN-based approach learns task-specific drug representations directly from the graph structure of the drugs.
Our work suggests that learning task-specific drug representations and leveraging a diverse dataset is a promising approach to advancing our understanding of drug-drug interaction and synergy.
arXiv Detail & Related papers (2022-10-03T10:16:29Z) - RECOVER: sequential model optimization platform for combination drug
repurposing identifies novel synergistic compounds in vitro [46.773794687622825]
We employ a sequential model optimization search applied to a deep learning model to quickly discover highly synergistic drug combinations active against a cancer cell line.
We find that the set of combinations queried by our model is enriched for highly synergistic combinations.
Remarkably, we rediscovered a synergistic drug combination that was later confirmed to be under study within clinical trials.
arXiv Detail & Related papers (2022-02-07T02:54:29Z) - MOOMIN: Deep Molecular Omics Network for Anti-Cancer Drug Combination
Therapy [2.446672595462589]
We propose a multimodal graph neural network that can predict the synergistic effect of drug combinations for cancer treatment.
Our model captures the representation based on the context of drugs at multiple scales based on a drug-protein interaction network and metadata.
We demonstrate that the model makes high-quality predictions over a wide range of cancer cell line tissues.
arXiv Detail & Related papers (2021-10-28T13:10:25Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z) - Drug-Drug Interaction Prediction with Wasserstein Adversarial
Autoencoder-based Knowledge Graph Embeddings [22.562175708415392]
We propose a new knowledge graph embedding framework for drug-drug interactions.
In our framework, the autoencoder is employed to generate high-quality negative samples.
The discriminator learns the embeddings of drugs and interactions based on both positive and negative triplets.
arXiv Detail & Related papers (2020-04-15T21:03:29Z) - A Node Embedding Framework for Integration of Similarity-based Drug
Combination Prediction [7.4517333921953215]
We propose a Network Embedding framework in Multiplex Networks (NEMN) to predict synthetic drug combinations.
Based on a multiplex drug similarity network, we offered alternative methods to integrate useful information from different aspects.
For Drug combination prediction, we found seven novel drug combinations which have been validated by external sources.
arXiv Detail & Related papers (2020-02-25T02:24:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.