論文の概要: A micromechanics-based recurrent neural networks model for
path-dependent cyclic deformation of short fiber composites
- arxiv url: http://arxiv.org/abs/2210.00842v1
- Date: Tue, 27 Sep 2022 12:14:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 17:03:29.084726
- Title: A micromechanics-based recurrent neural networks model for
path-dependent cyclic deformation of short fiber composites
- Title(参考訳): 短繊維複合材料の経路依存循環変形に対するマイクロメカニクスに基づくリカレントニューラルネットワークモデル
- Authors: J. Friemann, B. Dashtbozorg, M. Fagerstr\"om, S.M. Mirkhalaf
- Abstract要約: 本研究では, 短繊維強化複合材料の経路依存性弾塑性応力応答を予測するために, 繰り返し深部ニューラルネットワークモデルを訓練する。
このモデルは、独立したマイクロメカニカルシミュレーションと比較した場合、計算的に非常に正確な予測を与える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The macroscopic response of short fiber reinforced composites is dependent on
an extensive range of microstructural parameters. Thus, micromechanical
modeling of these materials is challenging and in some cases, computationally
expensive. This is particularly important when path-dependent plastic behavior
is needed to be predicted. A solution to this challenge is to enhance
micromechanical solutions with machine learning techniques such as artificial
neural networks. In this work, a recurrent deep neural network model is trained
to predict the path-dependent elasto-plastic stress response of short fiber
reinforced composites, given the microstructural parameters and the strain
path. Micromechanical meanfield simulations are conducted to create a data base
for training the validating the model. The model gives very accurate
predictions in a computationally efficient manner when compared with
independent micromechanical simulations.
- Abstract(参考訳): 短繊維強化複合材料のマクロ応答は, 広範囲のミクロ組織パラメータに依存する。
したがって、これらの材料のマイクロメカニカルモデリングは困難であり、場合によっては計算コストがかかる。
これは、経路依存的なプラスチックの挙動を予測する必要がある場合に特に重要である。
この課題の解決策は、人工ニューラルネットワークのような機械学習技術によるマイクロメカニカルソリューションを強化することである。
本研究では, 短繊維強化複合材料の経路依存性弾塑性応力応答を予測するために, 微細構造パラメータとひずみ経路を考慮し, 繰り返し深部ニューラルネットワークモデルを訓練した。
マイクロメカニカル平均場シミュレーションを行い、モデルの検証をトレーニングするためのデータベースを作成する。
このモデルは、独立したマイクロメカニカルシミュレーションと比較した場合、計算的に非常に正確な予測を与える。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Topology-Informed Machine Learning for Efficient Prediction of Solid Oxide Fuel Cell Electrode Polarization [0.0]
機械学習は固体酸化物燃料電池電極の研究と開発を迅速化するための強力な計算ツールとして登場した。
本稿では,計算トポロジから導出した永続化表現を利用した新しい手法を提案する。
人工ニューラルネットワークは、固体酸化物燃料電池電極の偏極曲線を正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-04T19:00:37Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
不均一物質のマイクロスケール解析のためのハイブリッド物理に基づくデータ駆動サロゲートモデルについて検討した。
提案したモデルは、ニューラルネットワークにそれらを埋め込むことで、フルオーダーのマイクロモデルで使用されるモデルに含まれる物理に基づく知識の恩恵を受ける。
論文 参考訳(メタデータ) (2024-04-05T12:40:03Z) - A Microstructure-based Graph Neural Network for Accelerating Multiscale
Simulations [0.0]
本稿では,この問題のマルチスケール性を維持するための代替的な代理モデル戦略を提案する。
我々は, 顕微鏡材料モデルを維持しながら, グラフニューラルネットワーク(GNN)を用いて, フルフィールドの顕微鏡歪みを予測した。
本研究では,サロゲートが複雑なマクロな応力-ひずみ経路を予測可能であることを示す。
論文 参考訳(メタデータ) (2024-02-20T15:54:24Z) - A Neural Network Transformer Model for Composite Microstructure Homogenization [1.2277343096128712]
森田中法のような均質化法は、幅広い構成特性に対して急速な均質化をもたらす。
本稿では,様々なミクロ構造の知識を捉えたトランスフォーマーニューラルネットワークアーキテクチャについて述べる。
ネットワークは、履歴に依存し、非線形で、均質化されたストレス-ひずみ応答を予測する。
論文 参考訳(メタデータ) (2023-04-16T19:57:52Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
本稿では、運動単位活性化電位波形を生成するために、逆向きに訓練された条件付き生成ニューラルネットワークを提案する。
本研究では,より少ない数の数値モデルの出力を高い精度で予測的に補間できることを実証する。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z) - Three-dimensional microstructure generation using generative adversarial
neural networks in the context of continuum micromechanics [77.34726150561087]
本研究は, 三次元マイクロ構造生成に適した生成対向ネットワークを提案する。
軽量アルゴリズムは、明示的な記述子を必要とせずに、単一のmicroCTスキャンから材料の基礎特性を学習することができる。
論文 参考訳(メタデータ) (2022-05-31T13:26:51Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Predicting Mechanical Properties from Microstructure Images in
Fiber-reinforced Polymers using Convolutional Neural Networks [8.023452876968694]
本稿では,繊維強化ポリマー試料の2次元分割トモグラフィ画像の応力場予測のために,ScressNetから修正した完全畳み込みニューラルネットワークについて検討する。
トレーニングされたモデルは、通常のラップトップ上で1回のフォワードパスで数秒以内に予測を行うことができ、ハイパフォーマンスなコンピューティングクラスタ上で完全な有限要素シミュレーションを実行するのに92.5時間かかる。
論文 参考訳(メタデータ) (2020-10-07T22:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。