論文の概要: Topology-Informed Machine Learning for Efficient Prediction of Solid Oxide Fuel Cell Electrode Polarization
- arxiv url: http://arxiv.org/abs/2410.05307v1
- Date: Fri, 4 Oct 2024 19:00:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 19:37:51.356304
- Title: Topology-Informed Machine Learning for Efficient Prediction of Solid Oxide Fuel Cell Electrode Polarization
- Title(参考訳): 固体酸化物燃料電池電極偏極の効率的な予測のための位相インフォーム機械学習
- Authors: Maksym Szemer, Szymon Buchaniec, Tomasz Prokop, Grzegorz Brus,
- Abstract要約: 機械学習は固体酸化物燃料電池電極の研究と開発を迅速化するための強力な計算ツールとして登場した。
本稿では,計算トポロジから導出した永続化表現を利用した新しい手法を提案する。
人工ニューラルネットワークは、固体酸化物燃料電池電極の偏極曲線を正確に予測することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning has emerged as a potent computational tool for expediting research and development in solid oxide fuel cell electrodes. The effective application of machine learning for performance prediction requires transforming electrode microstructure into a format compatible with artificial neural networks. Input data may range from a comprehensive digital material representation of the electrode to a selected set of microstructural parameters. The chosen representation significantly influences the performance and results of the network. Here, we show a novel approach utilizing persistence representation derived from computational topology. Using 500 microstructures and current-voltage characteristics obtained with 3D first-principles simulations, we have prepared an artificial neural network model that can replicate current-voltage characteristics of unseen microstructures based on their persistent image representation. The artificial neural network can accurately predict the polarization curve of solid oxide fuel cell electrodes. The presented method incorporates complex microstructural information from the digital material representation while requiring substantially less computational resources (preprocessing and prediction time approximately 1 min) compared to our high-fidelity simulations (simulation time approximately 1 hour) to obtain a single current-potential characteristic for one microstructure.
- Abstract(参考訳): 機械学習は固体酸化物燃料電池電極の研究と開発を迅速化するための強力な計算ツールとして登場した。
性能予測に機械学習を効果的に適用するには、電極の微細構造を人工ニューラルネットワークと互換性のあるフォーマットに変換する必要がある。
入力データは、電極の包括的デジタル材料表現から、選択されたミクロ構造パラメータのセットまで様々である。
選択された表現は、ネットワークの性能と結果に大きな影響を及ぼす。
本稿では,計算トポロジから導出した永続化表現を利用した新しい手法を提案する。
我々は,500の微細構造と3次元第一原理シミュレーションを用いて得られた電流電圧特性を用いて,その持続的な画像表現に基づいて,目に見えない微細構造の電流電圧特性を再現できる人工ニューラルネットワークモデルを構築した。
人工ニューラルネットワークは、固体酸化物燃料電池電極の偏極曲線を正確に予測することができる。
提案手法では, 計算資源(前処理時間と予測時間は約1分)を, 高忠実度シミュレーション(シミュレーション時間は約1時間)と比較して大幅に少なくし, 1つのマイクロ構造に対して1つの電流ポテンシャル特性を得る。
関連論文リスト
- Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
超イオン材料は、エネルギー密度と安全性を向上させる固体電池の推進に不可欠である。
このような物質を同定するための従来の計算手法は資源集約的であり、容易ではない。
普遍的原子間ポテンシャル解析によるイオン伝導率の迅速かつ確実な評価手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T09:01:36Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
本研究は、分子設計の課題を条件付き生成モデリングタスクとしてフレーミングすることによって検討する。
本研究では,(1)学習可能な事前分布を持つ潜伏ベクトル,(2)プロンプトとして潜伏ベクトルを用いる因果トランスフォーマーに基づく分子生成モデル,(3)潜在プロンプトを用いた分子の目標特性および/または制約値を予測する特性予測モデルからなる新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-02-27T03:33:23Z) - Reliable machine learning potentials based on artificial neural network
for graphene [2.115174610040722]
グラフェンの特別な2次元構造は、幅広い特異な材料特性を示すことができる。
分子動力学(MD)シミュレーションは、その特異な性質の微視的起源を理解するために広く採用されている。
人工ニューラルネットワークに基づく原子間ポテンシャルは、ポテンシャルエネルギー表面を表すためにグラフェンのために開発された。
論文 参考訳(メタデータ) (2023-06-12T17:12:08Z) - A micromechanics-based recurrent neural networks model for
path-dependent cyclic deformation of short fiber composites [0.0]
本研究では, 短繊維強化複合材料の経路依存性弾塑性応力応答を予測するために, 繰り返し深部ニューラルネットワークモデルを訓練する。
このモデルは、独立したマイクロメカニカルシミュレーションと比較した場合、計算的に非常に正確な予測を与える。
論文 参考訳(メタデータ) (2022-09-27T12:14:15Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
いくつかの分子量子ハミルトニアンの複雑な基底状態波動関数を学習するために、一般的なニューラルネットワークモデルを適用する。
ニューラルネットワークモデルを使用することで、単一コピー計測結果だけで観測対象を再構築するよりも堅牢な改善が得られます。
論文 参考訳(メタデータ) (2022-06-30T17:45:05Z) - Three-dimensional microstructure generation using generative adversarial
neural networks in the context of continuum micromechanics [77.34726150561087]
本研究は, 三次元マイクロ構造生成に適した生成対向ネットワークを提案する。
軽量アルゴリズムは、明示的な記述子を必要とせずに、単一のmicroCTスキャンから材料の基礎特性を学習することができる。
論文 参考訳(メタデータ) (2022-05-31T13:26:51Z) - Molecular Dynamics of Polymer-lipids in Solution from Supervised Machine
Learning [0.3867363075280543]
環境条件下で酢酸エチルで溶解した高分子高分子-脂質凝集体のエネルギーを予測するための3つのよく確立されたニューラルネットワークアーキテクチャの能力について検討する。
リカレントニューラルネットワークから生成されたデータモデルは、分子動力学から生成された溶媒との相互作用エネルギーとマクロ分子内ポテンシャルエネルギーのナノ秒単位の時系列で訓練され、試験される。
論文 参考訳(メタデータ) (2022-03-01T00:13:35Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Predicting Mechanical Properties from Microstructure Images in
Fiber-reinforced Polymers using Convolutional Neural Networks [8.023452876968694]
本稿では,繊維強化ポリマー試料の2次元分割トモグラフィ画像の応力場予測のために,ScressNetから修正した完全畳み込みニューラルネットワークについて検討する。
トレーニングされたモデルは、通常のラップトップ上で1回のフォワードパスで数秒以内に予測を行うことができ、ハイパフォーマンスなコンピューティングクラスタ上で完全な有限要素シミュレーションを実行するのに92.5時間かかる。
論文 参考訳(メタデータ) (2020-10-07T22:15:48Z) - Pores for thought: The use of generative adversarial networks for the
stochastic reconstruction of 3D multi-phase electrode microstructures with
periodic boundaries [0.0]
本研究は, 現実的なn相マイクロ構造データを生成するために, 深い畳み込み生成対向ネットワーク(DC-GAN)を実装した。
実データと合成データの比較は, 形態学的特性の観点から行う。
生成器への入力を変更することで、周期的な境界を持つマイクロ構造を3方向すべてに生成できることが示される。
論文 参考訳(メタデータ) (2020-02-17T17:38:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。