論文の概要: Invertible Surrogate Models: Joint surrogate modelling and
reconstruction of Laser-Wakefield Acceleration by invertible neural networks
- arxiv url: http://arxiv.org/abs/2106.00432v1
- Date: Tue, 1 Jun 2021 12:26:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-02 14:00:41.525485
- Title: Invertible Surrogate Models: Joint surrogate modelling and
reconstruction of Laser-Wakefield Acceleration by invertible neural networks
- Title(参考訳): 可逆サロゲートモデル:可逆ニューラルネットワークによるレーザー-ウェークフィールド加速の合同サロゲートモデルと再構成
- Authors: Friedrich Bethke, Richard Pausch, Patrick Stiller, Alexander Debus,
Michael Bussmann, Nico Hoffmann
- Abstract要約: 可逆ニューラルネットワークは、機械学習の最近の技術である。
我々は、レーザープラズマ加速器(iLWFA)に関わる物理学の複雑な前方シミュレーションを近似する可逆サロゲートモデルを導入する。
- 参考スコア(独自算出の注目度): 55.41644538483948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Invertible neural networks are a recent technique in machine learning
promising neural network architectures that can be run in forward and reverse
mode. In this paper, we will be introducing invertible surrogate models that
approximate complex forward simulation of the physics involved in laser plasma
accelerators: iLWFA. The bijective design of the surrogate model also provides
all means for reconstruction of experimentally acquired diagnostics. The
quality of our invertible laser wakefield acceleration network will be verified
on a large set of numerical LWFA simulations.
- Abstract(参考訳): 可逆ニューラルネットワークは、前と逆モードで実行できる、機械学習の有望なニューラルネットワークアーキテクチャにおける最近の技術である。
本稿では,レーザープラズマ加速器(iLWFA)に係わる物理の複雑な前方シミュレーションを近似する,可逆サロゲートモデルを導入する。
代理モデルの客観的設計は、実験的に得られた診断を再構築するためのあらゆる手段を提供する。
我々の逆レーザーウェイクフィールド加速ネットワークの品質は、大規模な数値LWFAシミュレーションで検証される。
関連論文リスト
- Neural Residual Diffusion Models for Deep Scalable Vision Generation [17.931568104324985]
我々は,統一的かつ大規模に拡張可能なニューラルネットワーク残差拡散モデルフレームワーク(Neural-RDM)を提案する。
提案したニューラル残差モデルは、画像およびビデオ生成ベンチマークの最先端スコアを取得する。
論文 参考訳(メタデータ) (2024-06-19T04:57:18Z) - 1-bit Quantized On-chip Hybrid Diffraction Neural Network Enabled by Authentic All-optical Fully-connected Architecture [4.594367761345624]
本研究では,行列乗算をDNNに組み込んだ新しいアーキテクチャであるHybrid Diffraction Neural Network(HDNN)を紹介する。
特異位相変調層と振幅変調層を用いて、トレーニングされたニューラルネットワークは、数字認識タスクにおいて96.39%と89%の顕著な精度を示した。
論文 参考訳(メタデータ) (2024-04-11T02:54:17Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - A Spiking Central Pattern Generator for the control of a simulated
lamprey robot running on SpiNNaker and Loihi neuromorphic boards [1.8139771201780368]
本稿では,シミュレートされたランプレーモデルを制御する手段として,スパイクニューラルネットワークとニューロモルフィックハードウェアの実装を提案する。
センサ情報によって提供できるネットワークへの入力を変更することで,ロボットの方向や速度を動的に制御できることを示す。
スパイキングアルゴリズムのこのカテゴリは、エネルギー効率と計算速度の観点から、ニューロモルフィックハードウェアの理論的利点を利用する有望な可能性を示している。
論文 参考訳(メタデータ) (2021-01-18T11:04:16Z) - Sobolev training of thermodynamic-informed neural networks for smoothed
elasto-plasticity models with level set hardening [0.0]
本研究では, 可視成分を用いた平滑な弾塑性モデルの学習を目的としたディープラーニングフレームワークを提案する。
収率関数を進化レベル集合として再キャストすることにより、ハミルトン・ヤコビ方程式の解を予測する機械学習手法を導入する。
論文 参考訳(メタデータ) (2020-10-15T22:43:32Z) - Neural Cellular Automata Manifold [84.08170531451006]
ニューラルセルラーオートマタのニューラルネットワークアーキテクチャは、より大きなNNにカプセル化可能であることを示す。
これにより、NAAの多様体を符号化する新しいモデルを提案し、それぞれが異なる画像を生成することができる。
生物学的には、我々のアプローチは転写因子の役割を担い、細胞の分化を促進する特定のタンパク質への遺伝子マッピングを調節する。
論文 参考訳(メタデータ) (2020-06-22T11:41:57Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。