論文の概要: Stability Via Adversarial Training of Neural Network Stochastic Control
of Mean-Field Type
- arxiv url: http://arxiv.org/abs/2210.00874v1
- Date: Tue, 27 Sep 2022 11:37:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 17:10:13.273260
- Title: Stability Via Adversarial Training of Neural Network Stochastic Control
of Mean-Field Type
- Title(参考訳): 平均場型ニューラルネットワーク確率制御の逆訓練による安定性
- Authors: Julian Barreiro-Gomez and Salah Eddine Choutri and Boualem Djehiche
- Abstract要約: これは、システム状態や制御入力などの変数の分布を問題に組み込むデータ駆動平均場型制御のクラスである。
本稿では,ニューラルネットワークによる解の近似の有効性を検証し,その安定性を評価する手法を提案する。
我々は、より堅牢なニューラルネットワークを得るために、逆入力でトレーニングセットを拡大することで安定性を高める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we present an approach to neural network mean-field-type
control and its stochastic stability analysis by means of adversarial inputs
(aka adversarial attacks). This is a class of data-driven mean-field-type
control where the distribution of the variables such as the system states and
control inputs are incorporated into the problem. Besides, we present a
methodology to validate the feasibility of the approximations of the solutions
via neural networks and evaluate their stability. Moreover, we enhance the
stability by enlarging the training set with adversarial inputs to obtain a
more robust neural network. Finally, a worked-out example based on the
linear-quadratic mean-field type control problem (LQ-MTC) is presented to
illustrate our methodology.
- Abstract(参考訳): 本稿では,ニューラルネットワークの平均場型制御へのアプローチと,その確率的安定性を逆入力(別名逆攻撃)を用いて解析する。
これはデータ駆動平均場型制御のクラスであり、システム状態や制御入力などの変数の分布が問題に組み込まれている。
さらに,ニューラルネットワークによる解の近似の有効性を検証し,その安定性を評価する手法を提案する。
さらに,学習セットを逆入力で拡張し,より頑健なニューラルネットワークを得ることにより,安定性を高める。
最後に,線形二乗平均場型制御問題 (LQ-MTC) に基づく実例を示し,提案手法について述べる。
関連論文リスト
- Mapping back and forth between model predictive control and neural networks [0.0]
2次コストと線形制約を持つ線形系に対するモデル予測制御(MPC)は、暗黙のニューラルネットワークとして正確に表現されていることを示す。
また、MPCの暗黙のニューラルネットワークを明示的なニューラルネットワークに"解き放つ"方法も導入されている。
論文 参考訳(メタデータ) (2024-04-18T09:29:08Z) - An Analytic Solution to Covariance Propagation in Neural Networks [10.013553984400488]
本稿では,ニューラルネットワークの入出力分布を正確に特徴付けるために,サンプルフリーモーメント伝搬法を提案する。
この手法の鍵となる有効性は、非線形活性化関数を通した確率変数の共分散に対する解析解である。
学習ニューラルネットワークの入力出力分布を分析し,ベイズニューラルネットワークを訓練する実験において,提案手法の適用性およびメリットを示す。
論文 参考訳(メタデータ) (2024-03-24T14:08:24Z) - Distributionally Robust Statistical Verification with Imprecise Neural
Networks [4.094049541486327]
AI安全性における特に困難な問題は、高次元自律システムの振る舞いを保証することだ。
本稿では,アクティブラーニング,不確実性定量化,ニューラルネットワーク検証を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-28T18:06:24Z) - To be or not to be stable, that is the question: understanding neural
networks for inverse problems [0.0]
本稿では,ニューラルネットワークの安定性と精度のトレードオフを理論的に解析する。
ネットワークの安定性を高め、良好な精度を維持するために、異なる教師付きおよび教師なしのソリューションを提案する。
論文 参考訳(メタデータ) (2022-11-24T16:16:40Z) - Variational Neural Networks [88.24021148516319]
本稿では,変分ニューラルネットワーク(VNN)と呼ばれるニューラルネットワークにおける不確実性推定手法を提案する。
VNNは、学習可能なサブレイヤで入力を変換することで、レイヤの出力分布のパラメータを生成する。
不確実性評価実験において、VNNはモンテカルロ・ドロップアウトやベイズ・バイ・バックプロパゲーション法よりも優れた不確実性が得られることを示す。
論文 参考訳(メタデータ) (2022-07-04T15:41:02Z) - Stability Verification in Stochastic Control Systems via Neural Network
Supermartingales [17.558766911646263]
2つの新しい側面を持つ一般非線形制御問題に対するアプローチを提案する。
我々は、A.s.asymptotic stabilityの証明にランキング・スーパーガレス(RSM)を使用し、ニューラルネットワークの学習方法を提案する。
論文 参考訳(メタデータ) (2021-12-17T13:05:14Z) - Stability Analysis of Unfolded WMMSE for Power Allocation [80.71751088398209]
電力割り当ては、無線ネットワークにおける基本的な問題の1つである。
これらのアルゴリズムの出力電力配分は入力摂動に関して安定であることが不可欠である。
本稿では,グラフニューラルネットワークを利用した最新のアルゴリズムであるUWMMSEに着目した。
論文 参考訳(メタデータ) (2021-10-14T15:44:19Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
本稿では、ニューラルネットワークによってパラメータ化され、ロバスト制御と同じ証明可能なロバスト性基準を適用した、一般的な非線形制御ポリシークラスを提案する。
提案手法は,複数の領域において有効であり,既存のロバスト制御法よりも平均ケース性能が向上し,(非ロバスト)深部RL法よりも最悪のケース安定性が向上した。
論文 参考訳(メタデータ) (2020-11-16T17:14:59Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。