論文の概要: Device-independent uncloneable encryption
- arxiv url: http://arxiv.org/abs/2210.01058v1
- Date: Mon, 3 Oct 2022 16:17:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 00:36:39.518799
- Title: Device-independent uncloneable encryption
- Title(参考訳): デバイスに依存しない暗号化
- Authors: Srijita Kundu and Ernest Y.-Z. Tan
- Abstract要約: 我々は、いくつかの復号化鍵が特定の暗号を復号化できる、無作為暗号の変種を導入する。
この変種は、デバイスに依存しない、すなわち、このスキームで使用される量子状態や測定を信頼することなく、実現可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncloneable encryption, first introduced by Broadbent and Lord (TQC 2020), is
a form of encryption producing a quantum ciphertext with the property that if
the ciphertext is distributed between two non-communicating parties, they
cannot both learn the underlying plaintext even after receiving the decryption
key. In this work, we introduce a variant of uncloneable encryption in which
several possible decryption keys can decrypt a particular encryption, and the
security requirement is that two parties who receive independently generated
decryption keys cannot both learn the underlying ciphertext. We show that this
variant of uncloneable encryption can be achieved device-independently, i.e.,
without trusting the quantum states and measurements used in the scheme.
Moreover, we show that this variant of uncloneable encryption works just as
well as the original definition in constructing private-key quantum money, and
that uncloneable bits can be achieved in this variant without using the quantum
random oracle model.
- Abstract(参考訳): 暗号化はBroadbent and Lord(TQC 2020)によって最初に導入されたもので、暗号文が2つの非通信相手間で分散されている場合、復号鍵を受け取った後も基礎となる平文を学習できないという性質を持つ暗号形式である。
そこで本研究では,複数の復号化鍵が特定の暗号を復号化でき,かつ,独立して生成した復号化鍵を受信した2つの当事者が基盤となる暗号文を学習できないことをセキュリティ要件とする,解読不能暗号の変種を提案する。
提案手法では, 量子状態や測定値を信頼することなく, デバイスに依存しない暗号化が実現可能であることを示す。
さらに,この暗号の変種は,秘密鍵量子マネーの構築における本来の定義と同様に機能し,量子ランダムオラクルモデルを用いずに,この変種で決定不能なビットを実現できることを示した。
関連論文リスト
- Relating Quantum Tamper-Evident Encryption to Other Cryptographic Notions [0.0]
量子タンパー・エビデント暗号スキーム(quantum tamper-evident encryption scheme)は、古典的なメッセージを量子暗号文にマッピングする非相互作用対称鍵暗号スキームである。
この量子暗号プリミティブは2003年にゴッテスマンによって初めて導入された。
我々は、情報理論的な設定で、他の暗号プリミティブと正式に関連付けることで、タンパーの明解な暗号化の理解を深める。
論文 参考訳(メタデータ) (2024-11-05T02:20:29Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
復号化可能な暗号化や復号化可能なプログラムなど,復号化可能なプリミティブの実現可能性を示す。
これは、マルチコピーセキュリティというより強い概念が、制限不能な暗号において到達範囲内にあることを示唆している。
論文 参考訳(メタデータ) (2024-10-17T02:37:40Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
我々は、新しいハイブリッドユニバーサルネットワーク符号化暗号(NU-HUNCC)を導入する。
NU-HUNCCは,リンクのサブセットにアクセス可能な盗聴者に対して,個別に情報理論的に保護されていることを示す。
論文 参考訳(メタデータ) (2024-02-13T12:12:39Z) - Exact Homomorphic Encryption [0.0]
本稿では,暗号前処理を必要とせずに,暗号化データの正確な計算を可能にするEHE(Exact Homomorphic Encryption)というフレームワークを提案する。
量子ゲートの2つの基本的な特性、可逆性と非可換性は、EHEの成功を確立する。
論文 参考訳(メタデータ) (2024-01-17T07:48:52Z) - Publicly-Verifiable Deletion via Target-Collapsing Functions [81.13800728941818]
ターゲットの折り畳みは、公開可能な削除(PVD)を可能にすることを示す。
我々は、弱い暗号的仮定から公開可能な削除を支援する様々なプリミティブを得るために、このフレームワークを構築している。
論文 参考訳(メタデータ) (2023-03-15T15:00:20Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - On the Feasibility of Unclonable Encryption, and More [16.64327673223307]
量子乱数オラクルモデルでは,不特定性を満たす暗号スキームが無条件に存在することを示す。
また,単一ビット出力点関数に対するコピー保護の実現可能性を確立する。
論文 参考訳(メタデータ) (2022-07-14T01:03:56Z) - Privacy and correctness trade-offs for information-theoretically secure
quantum homomorphic encryption [19.014535120129345]
量子ホモモルフィック暗号化は、サーバによる暗号化データへの直接計算を可能にする。
このような構成を可能にするためには、量子ホモモルフィック暗号は2つのプライバシー特性を満たす必要がある。
私たちの研究は、回路のプライバシー、データのプライバシー、量子同型暗号化プロトコルの幅広いファミリの正しさの基本的なトレードオフを明らかにします。
論文 参考訳(メタデータ) (2022-05-24T15:02:34Z) - Uncloneable Decryptors from Quantum Copy-Protection [0.38073142980733]
我々は、コピー保護方式により、CPAのセキュアな無クローンビット復号器をインスタンス化できることを示す。
次に、強いEUF-CMAセキュアデジタルシグネチャを使用して、CCA2セキュリティに対して、ブロック不能復号器のCPAセキュリティを強化する方法を示す。
論文 参考訳(メタデータ) (2022-03-11T11:47:04Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
完全同型暗号方式として, 完全同型暗号方式を初めて構築する。
我々の主要な技術要素は、量子証明器が古典的検証器に量子状態の形でのLearning with Errors分布からのサンプルが削除されたことを納得させる対話的プロトコルである。
論文 参考訳(メタデータ) (2022-03-03T10:07:32Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
量子鍵分布(QKD)システムのセキュリティ脆弱性について概説する。
我々は主に、盗聴攻撃の源となるバックフラッシュ光(backflash light)と呼ばれる特定の効果に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-23T18:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。