論文の概要: On The Effects Of Data Normalisation For Domain Adaptation On EEG Data
- arxiv url: http://arxiv.org/abs/2210.01081v3
- Date: Mon, 10 Jul 2023 07:14:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 22:47:38.762696
- Title: On The Effects Of Data Normalisation For Domain Adaptation On EEG Data
- Title(参考訳): 脳波データに対する領域適応に対するデータ正規化の効果について
- Authors: Andrea Apicella, Francesco Isgr\`o, Andrea Pollastro, Roberto Prevete
- Abstract要約: 本稿では,データ正規化の影響,あるいはドメイン適応(DA)手法と併用した標準化戦略について論じる。
本研究は, 各種DA法を応用した各種正規化手法の効果を実験的に評価した。
その結果、DAシナリオのパフォーマンスにおいて、正規化戦略の選択が重要な役割を果たすことがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the Machine Learning (ML) literature, a well-known problem is the Dataset
Shift problem where, differently from the ML standard hypothesis, the data in
the training and test sets can follow different probability distributions,
leading ML systems toward poor generalisation performances. This problem is
intensely felt in the Brain-Computer Interface (BCI) context, where bio-signals
as Electroencephalographic (EEG) are often used. In fact, EEG signals are
highly non-stationary both over time and between different subjects. To
overcome this problem, several proposed solutions are based on recent transfer
learning approaches such as Domain Adaption (DA). In several cases, however,
the actual causes of the improvements remain ambiguous. This paper focuses on
the impact of data normalisation, or standardisation strategies applied
together with DA methods. In particular, using \textit{SEED}, \textit{DEAP},
and \textit{BCI Competition IV 2a} EEG datasets, we experimentally evaluated
the impact of different normalization strategies applied with and without
several well-known DA methods, comparing the obtained performances. It results
that the choice of the normalisation strategy plays a key role on the
classifier performances in DA scenarios, and interestingly, in several cases,
the use of only an appropriate normalisation schema outperforms the DA
technique.
- Abstract(参考訳): 機械学習(ML)の文献では、よく知られた問題はデータセットシフトの問題であり、ML標準仮説とは違って、トレーニングとテストセットのデータは異なる確率分布に従うことができ、MLシステムの一般化性能が低くなる。
この問題は脳-コンピュータインタフェース(BCI)の文脈で強く感じられ、脳波(EEG)のような生体信号が頻繁に用いられる。
実際、脳波信号は時間とともに異なる被験者の間で非常に非定常である。
この問題を解決するために提案されたいくつかのソリューションは、ドメイン適応(da)のような最近のトランスファー学習アプローチに基づいている。
しかし、いくつかのケースでは、改善の実際の原因はあいまいである。
本稿では,データ正規化の影響,あるいはDA手法と併用した標準化戦略について述べる。
特に, \textit{seed}, \textit{deap}, \textit{bci competition iv 2a} eegデータセットを用いて,いくつかのよく知られたda法を使わずに適用した異なる正規化戦略の影響を実験的に評価し,得られた性能を比較した。
その結果、DAシナリオにおいて正規化戦略の選択は分類器のパフォーマンスにおいて重要な役割を担い、興味深いことに、いくつかのケースでは、適切な正規化スキーマのみを使用することでDAテクニックを上回ります。
関連論文リスト
- Generalized Group Data Attribution [28.056149996461286]
データ属性法は、個々のトレーニングデータポイントがモデル出力に与える影響を定量化する。
既存のDAメソッドはしばしば計算集約的であり、大規模な機械学習モデルに適用性を制限する。
本稿では,GA(Generalized Group Data Attribution, GGDA)フレームワークを紹介する。
論文 参考訳(メタデータ) (2024-10-13T17:51:21Z) - UDA-Bench: Revisiting Common Assumptions in Unsupervised Domain Adaptation Using a Standardized Framework [59.428668614618914]
現代無監督領域適応法(UDA)の有効性に影響を及ぼす様々な要因について, より深く考察する。
分析を容易にするため,ドメイン適応のためのトレーニングと評価を標準化する新しいPyTorchフレームワークであるUDA-Benchを開発した。
論文 参考訳(メタデータ) (2024-09-23T17:57:07Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
ドメイン適応メソッドは、$X$と$y$で分散シフトが同時に発生したときに苦労する。
本稿では,GOPSA(Geodesic Optimization for Predictive Shift Adaptation)と呼ばれる新しい手法を提案する。
GOPSAは、脳波のバイオメディカル応用のための混合効果モデリングと機械学習を併用する可能性を持っている。
論文 参考訳(メタデータ) (2024-07-04T12:15:42Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-03-07T16:17:33Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - NormAUG: Normalization-guided Augmentation for Domain Generalization [60.159546669021346]
ディープラーニングのためのNormAUG(Normalization-guided Augmentation)と呼ばれるシンプルで効果的な手法を提案する。
本手法は特徴レベルで多様な情報を導入し,主経路の一般化を改善する。
テスト段階では、アンサンブル戦略を利用して、モデルの補助経路からの予測を組み合わせ、さらなる性能向上を図る。
論文 参考訳(メタデータ) (2023-07-25T13:35:45Z) - Anomaly Detection under Distribution Shift [24.094884041252044]
異常検出(AD)は、通常のトレーニングサンプルのセットからパターンを学習し、テストデータの異常サンプルを特定することを目的とした、重要な機械学習タスクである。
既存のAD研究の多くは、トレーニングデータとテストデータは同一のデータ分布から引き出されると仮定しているが、テストデータは大きな分散シフトを持つ可能性がある。
トレーニングおよび推論段階のOOD標準試料の分布ギャップを最小化することにより, 多様な分布シフトに対する新しいロバストADアプローチを導入する。
論文 参考訳(メタデータ) (2023-03-24T07:39:08Z) - Toward cross-subject and cross-session generalization in EEG-based emotion recognition: Systematic review, taxonomy, and methods [0.0]
脳波信号の非定常性は重要な問題であり、データセットシフト問題につながる可能性がある。
418の論文が Scopus, IEEE Xplore, PubMedデータベースから取得された。
平均分類精度の観点から最も優れた結果を得た研究を同定した。
論文 参考訳(メタデータ) (2022-12-16T22:48:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。