論文の概要: GIDN: A Lightweight Graph Inception Diffusion Network for High-efficient Link Prediction
- arxiv url: http://arxiv.org/abs/2210.01301v3
- Date: Tue, 2 Apr 2024 13:52:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 14:21:15.327403
- Title: GIDN: A Lightweight Graph Inception Diffusion Network for High-efficient Link Prediction
- Title(参考訳): GIDN:高効率リンク予測のための軽量グラフ開始拡散ネットワーク
- Authors: Zixiao Wang, Yuluo Guo, Jin Zhao, Yu Zhang, Hui Yu, Xiaofei Liao, Biao Wang, Ting Yu,
- Abstract要約: このモデルは、異なる特徴空間におけるグラフ拡散を一般化し、複雑なネットワーク構造に起因する大量の計算を避けるために開始モジュールを使用する。
我々は、Open Graph Benchmarkデータセット上でGIDNモデルを評価し、ogbl-collabデータセット上でAGDNよりも11%高いパフォーマンスを達成した。
- 参考スコア(独自算出の注目度): 14.172007617667074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a Graph Inception Diffusion Networks(GIDN) model. This model generalizes graph diffusion in different feature spaces, and uses the inception module to avoid the large amount of computations caused by complex network structures. We evaluate GIDN model on Open Graph Benchmark(OGB) datasets, reached an 11% higher performance than AGDN on ogbl-collab dataset.
- Abstract(参考訳): 本稿では,グラフインセプション拡散ネットワーク(GIDN)モデルを提案する。
このモデルは、異なる特徴空間におけるグラフ拡散を一般化し、複雑なネットワーク構造に起因する大量の計算を避けるために開始モジュールを使用する。
我々は,Open Graph Benchmark(OGB)データセット上のGIDNモデルを評価し,ogbl-collabデータセット上のAGDNよりも11%高い性能を示した。
関連論文リスト
- DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを処理することで人気を集めている。
既存のメソッドは通常、固定数のGNNレイヤを使用して、すべてのグラフの表現を生成する。
本稿では,GNNに2つの改良を加えたDA-MoE法を提案する。
論文 参考訳(メタデータ) (2024-11-05T11:46:27Z) - MassiveGNN: Efficient Training via Prefetching for Massively Connected Distributed Graphs [11.026326555186333]
本稿では,現在最先端のAmazon DistDGL分散GNNフレームワーク上に,パラメータ化された連続プリフェッチと消去方式を提案する。
NERSC(National Energy Research Scientific Computing Center)のPerlmutterスーパーコンピュータでは、エンドツーエンドのトレーニング性能が15~40%向上している。
論文 参考訳(メタデータ) (2024-10-30T05:10:38Z) - Tackling Oversmoothing in GNN via Graph Sparsification: A Truss-based Approach [1.4854797901022863]
本稿では,グラフの高密度領域からエッジを抽出する新鮮で柔軟なトラスグラフスペーシフィケーションモデルを提案する。
次に、GIN、SAGPool、GMT、DiffPool、MinCutPool、HGP-SL、DMonPool、AdamGNNといった最先端のベースラインGNNとプールモデルでスパーシフィケーションモデルを利用する。
論文 参考訳(メタデータ) (2024-07-16T17:21:36Z) - HUGE: Huge Unsupervised Graph Embeddings with TPUs [6.108914274067702]
グラフ埋め込み(Graph Embedding)は、グラフ内のノードを連続的に表現するプロセスである。
高帯域幅メモリを利用した高性能グラフ埋め込みアーキテクチャを提案する。
実・合成大規模データセット上での埋め込み空間の品質を検証する。
論文 参考訳(メタデータ) (2023-07-26T20:29:15Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Scaling Graph Neural Networks with Approximate PageRank [64.92311737049054]
GNNにおける情報拡散の効率的な近似を利用したPPRGoモデルを提案する。
高速であることに加えて、PPRGoは本質的にスケーラブルであり、業界設定で見られるような大規模なデータセットに対して、自明に並列化することができる。
このグラフのすべてのノードに対するPPRGoのトレーニングとラベルの予測には1台のマシンで2分未満で、同じグラフ上の他のベースラインをはるかに上回ります。
論文 参考訳(メタデータ) (2020-07-03T09:30:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。