A new family of Constitutive Artificial Neural Networks towards
automated model discovery
- URL: http://arxiv.org/abs/2210.02202v1
- Date: Thu, 15 Sep 2022 18:33:37 GMT
- Title: A new family of Constitutive Artificial Neural Networks towards
automated model discovery
- Authors: Kevin Linka and Ellen Kuhl
- Abstract summary: Neural Networks are powerful approximators that can learn function relations from large data without any knowledge of the underlying physics.
We show that Constive Neural Networks have potential paradigm shift in user-defined model selection to automated model discovery.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For more than 100 years, chemical, physical, and material scientists have
proposed competing constitutive models to best characterize the behavior of
natural and man-made materials in response to mechanical loading. Now, computer
science offers a universal solution: Neural Networks. Neural Networks are
powerful function approximators that can learn constitutive relations from
large data without any knowledge of the underlying physics. However, classical
Neural Networks entirely ignore a century of research in constitutive modeling,
violate thermodynamic considerations, and fail to predict the behavior outside
the training regime. Here we design a new family of Constitutive Artificial
Neural Networks that inherently satisfy common kinematic, thermodynamic, and
physic constraints and, at the same time, constrain the design space of
admissible functions to create robust approximators, even in the presence of
sparse data. Towards this goal we revisit the non-linear field theories of
mechanics and reverse-engineer the network input to account for material
objectivity, symmetry, and incompressibility; the network output to enforce
thermodynamic consistency; the activation functions to implement physically
reasonable restrictions; and the network architecture to ensure polyconvexity.
We demonstrate that this new class of models is a generalization of the
classical neo Hooke, Blatz Ko, Mooney Rivlin, Yeoh, and Demiray models and that
the network weights have a clear physical interpretation. When trained with
classical benchmark data for rubber under uniaxial tension, biaxial extension,
and pure shear, our network autonomously selects the best constitutive model
and learns its set of parameters. Our findings suggests that Constitutive
Artificial Neural Networks have the potential to induce a paradigm shift in
constitutive modeling, from user-defined model selection to automated model
discovery.
Related papers
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints.
Experiments on Aspen models of a stirred-tank reactor unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.
arXiv Detail & Related papers (2024-02-11T17:40:26Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Bayesian Physics-Informed Neural Networks for real-world nonlinear
dynamical systems [0.0]
We integrate data, physics, and uncertainties by combining neural networks, physics-informed modeling, and Bayesian inference.
Our study reveals the inherent advantages and disadvantages of Neural Networks, Bayesian Inference, and a combination of both.
We anticipate that the underlying concepts and trends generalize to more complex disease conditions.
arXiv Detail & Related papers (2022-05-12T19:04:31Z) - NN-EUCLID: deep-learning hyperelasticity without stress data [0.0]
We propose a new approach for unsupervised learning of hyperelastic laws with physics-consistent deep neural networks.
In contrast to supervised learning, which assumes the stress-strain, the approach only uses realistically measurable full-elastic field displacement and global force availability data.
arXiv Detail & Related papers (2022-05-04T13:54:54Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Explainable artificial intelligence for mechanics: physics-informing
neural networks for constitutive models [0.0]
In mechanics, the new and active field of physics-informed neural networks attempts to mitigate this disadvantage by designing deep neural networks on the basis of mechanical knowledge.
We propose a first step towards a physics-forming-in approach, which explains neural networks trained on mechanical data a posteriori.
Therein, the principal component analysis decorrelates the distributed representations in cell states of RNNs and allows the comparison to known and fundamental functions.
arXiv Detail & Related papers (2021-04-20T18:38:52Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Thermodynamics-based Artificial Neural Networks for constitutive
modeling [0.0]
We propose a new class of data-driven, physics-based, neural networks for modeling of strain rate independent processes at the material point level.
The two basic principles of thermodynamics are encoded in the network's architecture by taking advantage of automatic differentiation.
We demonstrate the wide applicability of TANNs for modeling elasto-plastic materials, with strain hardening and softening strain.
arXiv Detail & Related papers (2020-05-25T15:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.