論文の概要: From Intelligent Agents to Trustworthy Human-Centred Multiagent Systems
- arxiv url: http://arxiv.org/abs/2210.02260v1
- Date: Wed, 5 Oct 2022 13:40:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 14:44:30.825492
- Title: From Intelligent Agents to Trustworthy Human-Centred Multiagent Systems
- Title(参考訳): 知的エージェントから信頼できる人間中心マルチエージェントシステムへ
- Authors: Mohammad Divband Soorati, Enrico H. Gerding, Enrico Marchioni, Pavel
Naumov, Timothy J. Norman, Sarvapali D. Ramchurn, Bahar Rastegari, Adam
Sobey, Sebastian Stein, Danesh Tarpore, Vahid Yazdanpanah, Jie Zhang
- Abstract要約: サウサンプトン大学のエージェント・インタラクション・複雑度研究グループには、マルチエージェントシステム(MAS)の研究の長い実績がある。
我々は、このグループによって達成された重要な成果を強調し、信頼に足る自律システムを開発し、社会的善をサポートすることを目的とした人間中心のAIシステムを展開するための最近の研究とオープンな研究課題について詳述する。
- 参考スコア(独自算出の注目度): 32.13503855910301
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Agents, Interaction and Complexity research group at the University of
Southampton has a long track record of research in multiagent systems (MAS). We
have made substantial scientific contributions across learning in MAS,
game-theoretic techniques for coordinating agent systems, and formal methods
for representation and reasoning. We highlight key results achieved by the
group and elaborate on recent work and open research challenges in developing
trustworthy autonomous systems and deploying human-centred AI systems that aim
to support societal good.
- Abstract(参考訳): サウサンプトン大学のエージェント・インタラクション・複雑度研究グループ(Agens, Interaction and Complexity Research Group)は、マルチエージェントシステム(MAS)の研究の長い実績を持っている。
masの学習、エージェントシステムのコーディネートのためのゲーム理論技術、表現と推論のための形式的手法にまたがる科学的な貢献を行いました。
我々は、このグループによって達成された重要な成果を強調し、信頼に足る自律システムを開発し、社会的善をサポートすることを目的とした人間中心のAIシステムを展開するための最近の研究とオープンな研究課題について詳述する。
関連論文リスト
- Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation [48.29699224989952]
VirSciは研究のアイデアを共同で生成し、評価し、洗練するエージェントのチームを組織している。
このマルチエージェントアプローチは、新規で影響力のある科学的アイデアを生み出す上で、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-12T07:16:22Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
本稿では,研究者にパーソナライズされた効率的な調査支援を目的とした会話システムであるSurveyAgentを紹介する。
SurveyAgentは3つの重要なモジュールを統合している。文書を整理するための知識管理、関連する文献を発見するための勧告、より深いレベルでコンテンツを扱うためのクエリ回答だ。
本評価は,研究活動の合理化におけるSurveyAgentの有効性を実証し,研究者の科学文献との交流を促進する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-09T15:01:51Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - A Survey on Context-Aware Multi-Agent Systems: Techniques, Challenges
and Future Directions [1.1458366773578277]
自律型エージェントに対する研究の関心が高まっている。
課題は、これらのエージェントが動的環境における不確実性を学び、推論し、ナビゲートできるようにすることである。
コンテキスト認識は、マルチエージェントシステムの強化において重要な要素として現れる。
論文 参考訳(メタデータ) (2024-02-03T00:27:22Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Developing, Evaluating and Scaling Learning Agents in Multi-Agent
Environments [38.16072318606355]
DeepMindのGame Theory & Multi-Agentチームは、マルチエージェント学習のいくつかの側面を研究している。
私たちのグループの重要な目的は、DeepMindのリソースと専門知識を深層強化学習に活用することにあります。
論文 参考訳(メタデータ) (2022-09-22T12:28:29Z) - A Survey on Large-Population Systems and Scalable Multi-Agent
Reinforcement Learning [18.918558716102144]
我々は、大規模人口システムを理解し分析するための現在のアプローチに光を当てる。
我々は,大規模制御の応用の可能性を調査し,実践システムにおける学習アルゴリズムの有能な将来的応用について検討する。
論文 参考訳(メタデータ) (2022-09-08T14:58:50Z) - Deep Reinforcement Learning for Multi-Agent Interaction [14.532965827043254]
自律エージェント研究グループは、自律システム制御のための新しい機械学習アルゴリズムを開発した。
本稿では,現在進行中の研究ポートフォリオの概要を概説するとともに,今後の課題について論じる。
論文 参考訳(メタデータ) (2022-08-02T21:55:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。