論文の概要: Temporal Spatial Decomposition and Fusion Network for Time Series
Forecasting
- arxiv url: http://arxiv.org/abs/2210.03122v1
- Date: Thu, 6 Oct 2022 12:37:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 13:07:10.783941
- Title: Temporal Spatial Decomposition and Fusion Network for Time Series
Forecasting
- Title(参考訳): 時系列予測のための時間空間分解と融合ネットワーク
- Authors: Liwang Zhou, Jing Gao
- Abstract要約: 本稿では,自己分解機構と注意的特徴融合機構を備えたニューラルネットワークとしてTSDFNetを提案する。
1ダース以上のデータセット上で、既存の広く受け入れられているモデルよりもパフォーマンスが向上することを示す。
- 参考スコア(独自算出の注目度): 11.605905750890097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature engineering is required to obtain better results for time series
forecasting, and decomposition is a crucial one. One decomposition approach
often cannot be used for numerous forecasting tasks since the standard time
series decomposition lacks flexibility and robustness. Traditional feature
selection relies heavily on preexisting domain knowledge, has no generic
methodology, and requires a lot of labor. However, most time series prediction
models based on deep learning typically suffer from interpretability issue, so
the "black box" results lead to a lack of confidence. To deal with the above
issues forms the motivation of the thesis. In the paper we propose TSDFNet as a
neural network with self-decomposition mechanism and an attentive feature
fusion mechanism, It abandons feature engineering as a preprocessing convention
and creatively integrates it as an internal module with the deep model. The
self-decomposition mechanism empowers TSDFNet with extensible and adaptive
decomposition capabilities for any time series, users can choose their own
basis functions to decompose the sequence into temporal and generalized spatial
dimensions. Attentive feature fusion mechanism has the ability to capture the
importance of external variables and the causality with target variables. It
can automatically suppress the unimportant features while enhancing the
effective ones, so that users do not have to struggle with feature selection.
Moreover, TSDFNet is easy to look into the "black box" of the deep neural
network by feature visualization and analyze the prediction results. We
demonstrate performance improvements over existing widely accepted models on
more than a dozen datasets, and three experiments showcase the interpretability
of TSDFNet.
- Abstract(参考訳): 時系列予測のより良い結果を得るためには、機能エンジニアリングが必要であり、分解が不可欠である。
標準的な時系列分解は柔軟性と堅牢性に欠けるため、多くの予測タスクには1つの分解アプローチは使用できないことが多い。
従来の機能選択は、既存のドメイン知識に大きく依存し、一般的な方法論がなく、多くの労力を必要とします。
しかしながら、ディープラーニングに基づくほとんどの時系列予測モデルは、通常、解釈可能性の問題に苦しむため、"ブラックボックス"の結果は、信頼性の欠如につながる。
上記の問題に対処するためには、論文の動機となる。
本稿では,自己分解機構と注意的特徴融合機構を備えたニューラルネットワークとしてTSDFNetを提案する。
この自己分解機構により、TSDFNetは任意の時系列に対して拡張性および適応性のある分解機能を付与し、ユーザは自身の基底関数を選択して、シーケンスを時間的空間次元と一般化空間次元に分解することができる。
注意深い特徴融合機構は、外部変数の重要性とターゲット変数との因果関係を捉えることができる。
有効機能を強化しながら、重要でない機能を自動的に抑制できるので、ユーザーは機能選択に苦労する必要がなくなる。
さらに、tsdfnetはディープニューラルネットワークの「ブラックボックス」を可視化し、予測結果を分析することで容易に調べることができる。
我々は10以上のデータセット上で,既存の広く受け入れられているモデルに対する性能改善を実証し,tsdfnetの解釈可能性を示す3つの実験を行った。
関連論文リスト
- Face Forgery Detection with Elaborate Backbone [50.914676786151574]
Face Forgery Detectionは、デジタル顔が本物か偽物かを決定することを目的としている。
以前のFFDモデルは、偽造の手がかりを表現および抽出するために既存のバックボーンを直接使用していた。
本稿では,実顔データセットを用いた自己教師型学習でVTネットワークを活用することで,バックボーンの事前トレーニングを提案する。
次に、多様な偽の手がかりを抽出するバックボーンの能力を強化するために、競争力のあるバックボーンの微調整フレームワークを構築します。
論文 参考訳(メタデータ) (2024-09-25T13:57:16Z) - Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
時系列における教師なし異常検出は、手動による介入の必要性を大幅に低減するため、産業応用において不可欠である。
従来の手法では、グラフニューラルネットワーク(GNN)やトランスフォーマーを使用して空間を解析し、RNNは時間的依存をモデル化していた。
本稿では,TopoGDNと呼ばれる多変量時系列異常検出のための拡張グラフ注意ネットワーク(GAT)上に構築された新しい時間モデルを提案する。
論文 参考訳(メタデータ) (2024-08-23T14:06:30Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
拡散モデルはマルチラウンド・デノナイジングの時間ステップに依存している。
3つの戦略を含む新しい量子化フレームワークを導入する。
このフレームワークは時間情報のほとんどを保存し、高品質なエンドツーエンド生成を保証する。
論文 参考訳(メタデータ) (2024-07-28T17:46:15Z) - FocusLearn: Fully-Interpretable, High-Performance Modular Neural Networks for Time Series [0.3277163122167434]
本稿では,構築によって解釈可能な時系列予測のための新しいモジュール型ニューラルネットワークモデルを提案する。
リカレントニューラルネットワークはデータ内の時間的依存関係を学習し、アテンションベースの特徴選択コンポーネントは最も関連性の高い特徴を選択する。
モジュール型のディープネットワークは、選択した機能から独立してトレーニングされ、ユーザーが機能がどのように結果に影響を与えるかを示し、モデルを解釈できる。
論文 参考訳(メタデータ) (2023-11-28T14:51:06Z) - Two Steps Forward and One Behind: Rethinking Time Series Forecasting
with Deep Learning [7.967995669387532]
Transformerは、人工知能ニューラルネットワークの世界に革命をもたらした、非常に成功したディープラーニングモデルである。
時系列予測領域に適用したトランスフォーマーモデルの有効性について検討する。
性能が良く、より複雑でない代替モデル一式を提案する。
論文 参考訳(メタデータ) (2023-04-10T12:47:42Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - TSEM: Temporally Weighted Spatiotemporal Explainable Neural Network for
Multivariate Time Series [0.0]
時系列深層学習におけるモデルに依存しない,モデル固有のアプローチを提案する。
TSEMは,多くの解釈可能性基準を満たすとともに,XCMよりも精度が高いことを示す。
論文 参考訳(メタデータ) (2022-05-25T18:54:25Z) - Autoformer: Decomposition Transformers with Auto-Correlation for
Long-Term Series Forecasting [68.86835407617778]
Autoformerは、Auto-Correlation機構を備えた、新しい分解アーキテクチャである。
長期的な予測では、Autoformerは6つのベンチマークで相対的に改善され、最先端の精度が得られる。
論文 参考訳(メタデータ) (2021-06-24T13:43:43Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z) - ForecastNet: A Time-Variant Deep Feed-Forward Neural Network
Architecture for Multi-Step-Ahead Time-Series Forecasting [6.043572971237165]
本稿では,フィードフォワードアーキテクチャを用いて時間変動モデルを提供するForecastNetを提案する。
ForecastNetは、いくつかのデータセットで統計的およびディープラーニングベンチマークモデルを上回るパフォーマンスを示す。
論文 参考訳(メタデータ) (2020-02-11T01:03:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。