Unsupervised Domain Adaptation for COVID-19 Information Service with
Contrastive Adversarial Domain Mixup
- URL: http://arxiv.org/abs/2210.03250v1
- Date: Thu, 6 Oct 2022 23:29:10 GMT
- Title: Unsupervised Domain Adaptation for COVID-19 Information Service with
Contrastive Adversarial Domain Mixup
- Authors: Huimin Zeng, Zhenrui Yue, Ziyi Kou, Lanyu Shang, Yang Zhang, Dong Wang
- Abstract summary: In the real-world application of COVID-19 misinformation detection, a fundamental challenge is the lack of labeled COVID data.
We propose an unsupervised domain adaptation framework using contrastive learning and adversarial domain mixup.
Our method can effectively adapt misinformation detection systems to the unseen COVID-19 target domain with significant improvements.
- Score: 11.929914721626849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the real-world application of COVID-19 misinformation detection, a
fundamental challenge is the lack of the labeled COVID data to enable
supervised end-to-end training of the models, especially at the early stage of
the pandemic. To address this challenge, we propose an unsupervised domain
adaptation framework using contrastive learning and adversarial domain mixup to
transfer the knowledge from an existing source data domain to the target
COVID-19 data domain. In particular, to bridge the gap between the source
domain and the target domain, our method reduces a radial basis function (RBF)
based discrepancy between these two domains. Moreover, we leverage the power of
domain adversarial examples to establish an intermediate domain mixup, where
the latent representations of the input text from both domains could be mixed
during the training process. Extensive experiments on multiple real-world
datasets suggest that our method can effectively adapt misinformation detection
systems to the unseen COVID-19 target domain with significant improvements
compared to the state-of-the-art baselines.
Related papers
- A Pairwise DomMix Attentive Adversarial Network for Unsupervised Domain Adaptive Object Detection [18.67853854539245]
Unsupervised Domain Adaptive Object Detection (DAOD) could adapt a model trained on a source domain to an unlabeled target domain for object detection.
We propose a pairwise attentive adversarial network with a Domain Mixup (DomMix) module to mitigate the aforementioned challenges.
arXiv Detail & Related papers (2024-07-03T06:25:20Z) - Overcoming Negative Transfer by Online Selection: Distant Domain Adaptation for Fault Diagnosis [42.85741244467877]
The term distant domain adaptation problem' describes the challenge of adapting from a labeled source domain to a significantly disparate unlabeled target domain.
This problem exhibits the risk of negative transfer, where extraneous knowledge from the source domain adversely affects the target domain performance.
In response to this challenge, we propose a novel Online Selective Adversarial Alignment (OSAA) approach.
arXiv Detail & Related papers (2024-05-25T07:17:47Z) - IIDM: Inter and Intra-domain Mixing for Semi-supervised Domain Adaptation in Semantic Segmentation [46.6002506426648]
Unsupervised domain adaptation (UDA) is the dominant approach to solve this problem.
We propose semi-supervised domain adaptation (SSDA) to overcome this limitation.
We propose a novel framework that incorporates both Inter and Intra Domain Mixing (IIDM), where inter-domain mixing mitigates the source-target domain gap and intra-domain mixing enriches the available target domain information.
arXiv Detail & Related papers (2023-08-30T08:44:21Z) - Joint Attention-Driven Domain Fusion and Noise-Tolerant Learning for
Multi-Source Domain Adaptation [2.734665397040629]
Multi-source Unsupervised Domain Adaptation transfers knowledge from multiple source domains with labeled data to an unlabeled target domain.
The distribution discrepancy between different domains and the noisy pseudo-labels in the target domain both lead to performance bottlenecks.
We propose an approach that integrates Attention-driven Domain fusion and Noise-Tolerant learning (ADNT) to address the two issues mentioned above.
arXiv Detail & Related papers (2022-08-05T01:08:41Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
Unsupervised domain adaptation (UDA) is an important topic in the computer vision community.
We present a mechanism that regularizes cross-domain representation learning with a domain-agnostic prior (DAP)
Our research reveals that UDA benefits much from better proxies, possibly from other data modalities.
arXiv Detail & Related papers (2022-04-06T09:13:25Z) - ConDA: Unsupervised Domain Adaptation for LiDAR Segmentation via
Regularized Domain Concatenation [10.65673380743972]
ConDA is a concatenation-based domain adaptation framework for LiDAR segmentation.
We propose an anti-aliasing regularizer and an entropy aggregator to reduce the negative effect caused by the aliasing artifacts and noisy pseudo labels.
arXiv Detail & Related papers (2021-11-30T09:53:24Z) - IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID [58.46907388691056]
We argue that the bridging between the source and target domains can be utilized to tackle the UDA re-ID task.
We propose an Intermediate Domain Module (IDM) to generate intermediate domains' representations on-the-fly.
Our proposed method outperforms the state-of-the-arts by a large margin in all the common UDA re-ID tasks.
arXiv Detail & Related papers (2021-08-05T07:19:46Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
Domain adaptation becomes more challenging with increasing gaps between source and target domains.
We propose self-training of auxiliary models (AuxSelfTrain) that learns models for intermediate domains.
Experiments on benchmark datasets of unsupervised and semi-supervised domain adaptation verify its efficacy.
arXiv Detail & Related papers (2021-06-18T03:15:25Z) - Domain Adaptation with Incomplete Target Domains [61.68950959231601]
We propose an Incomplete Data Imputation based Adversarial Network (IDIAN) model to address this new domain adaptation challenge.
In the proposed model, we design a data imputation module to fill the missing feature values based on the partial observations in the target domain.
We conduct experiments on both cross-domain benchmark tasks and a real world adaptation task with imperfect target domains.
arXiv Detail & Related papers (2020-12-03T00:07:40Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information.
Conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure.
We propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains.
arXiv Detail & Related papers (2020-02-12T09:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.