Network Intrusion Detection System in a Light Bulb
- URL: http://arxiv.org/abs/2210.03254v1
- Date: Thu, 6 Oct 2022 23:36:04 GMT
- Title: Network Intrusion Detection System in a Light Bulb
- Authors: Liam Daly Manocchio, Siamak Layeghy, Marius Portmann
- Abstract summary: Internet of Things (IoT) devices are progressively being utilised in a variety of edge applications to monitor and control home and industry infrastructure.
Despite a large number of proposed Network Intrusion Detection Systems (NIDSs), there is limited research into practical IoT implementations.
This research aims to address this gap by pushing the boundaries on low-power Machine Learning (ML) based NIDSs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Internet of Things (IoT) devices are progressively being utilised in a
variety of edge applications to monitor and control home and industry
infrastructure. Due to the limited compute and energy resources, active
security protections are usually minimal in many IoT devices. This has created
a critical security challenge that has attracted researchers' attention in the
field of network security. Despite a large number of proposed Network Intrusion
Detection Systems (NIDSs), there is limited research into practical IoT
implementations, and to the best of our knowledge, no edge-based NIDS has been
demonstrated to operate on common low-power chipsets found in the majority of
IoT devices, such as the ESP8266. This research aims to address this gap by
pushing the boundaries on low-power Machine Learning (ML) based NIDSs. We
propose and develop an efficient and low-power ML-based NIDS, and demonstrate
its applicability for IoT edge applications by running it on a typical smart
light bulb. We also evaluate our system against other proposed edge-based NIDSs
and show that our model has a higher detection performance, and is
significantly faster and smaller, and therefore more applicable to a wider
range of IoT edge devices.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
This paper proposes an innovative design of the Internet of Things (IoT) Environment Intrusion Detection System (or IDS) using Deep Learning-integrated Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks.
Our model, based on the CICIDS 2017 dataset, achieved an accuracy of 99.52% in classifying network traffic as either benign or malicious.
arXiv Detail & Related papers (2024-06-18T08:42:51Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
The integration of Internet of Things (IoT) applications in our daily lives has led to a surge in data traffic, posing significant security challenges.
This paper focuses on improving the effectiveness of ML-based IDS at the edge level by introducing a novel method to find a balanced trade-off between cost and accuracy.
arXiv Detail & Related papers (2024-04-29T21:26:18Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Is there a Trojan! : Literature survey and critical evaluation of the
latest ML based modern intrusion detection systems in IoT environments [0.0]
IoT as a domain has grown so much in the last few years that it rivals that of the mobile network environments in terms of data volumes as well as cybersecurity threats.
The confidentiality and privacy of data within IoT environments have become very important areas of security research within the last few years.
More and more security experts are interested in designing robust IDS systems to protect IoT environments as a supplement to the more traditional security methods.
arXiv Detail & Related papers (2023-06-14T08:48:46Z) - Efficient Attack Detection in IoT Devices using Feature Engineering-Less
Machine Learning [0.0]
This research proposes a way to overcome the barrier by bypassing feature engineering in the deep learning pipeline and using raw packet data as input.
We introduce a feature engineering-less machine learning (ML) process to perform malware detection on IoT devices.
Our proposed model, "Feature engineering-less-ML (FEL-ML)," is a lighter-weight detection algorithm that expends no extra computations on "engineered" features.
arXiv Detail & Related papers (2023-01-09T17:26:37Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
Internet of Things (IoT) environments are monitored via a large number of IoT enabled sensing devices.
To alleviate this issue, sensors are often configured to operate at relatively low sampling frequencies.
This can hamper dramatically subsequent decision-making, such as forecasting.
arXiv Detail & Related papers (2022-06-15T19:46:59Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
We propose a simultaneous wireless power transfer and information transmission scheme for IoT devices with support from unmanned aerial vehicle (UAV) communications.
In a first phase, IoT devices harvest energy from the UAV through wireless power transfer; and then in a second phase, the UAV collects data from the IoT devices through information transmission.
We formulate a Markov decision process and propose two deep reinforcement learning algorithms to solve the optimization problem of maximizing the total network sum-rate.
arXiv Detail & Related papers (2021-08-05T23:55:44Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Lightweight IoT Malware Detection Solution Using CNN Classification [2.288885651912488]
The security aspect of IoT devices is an infant field, which is why it is our focus in this paper.
We developed a system that can recognize malicious behavior of a specific IoT node on the network.
Through convolutional neural network and monitoring, we were able to provide malware detection for IoT using a central node that can be installed within the network.
arXiv Detail & Related papers (2020-10-13T10:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.