Enhancing Cybersecurity in IoT Networks: A Deep Learning Approach to Anomaly Detection
- URL: http://arxiv.org/abs/2412.08301v1
- Date: Wed, 11 Dec 2024 11:31:05 GMT
- Title: Enhancing Cybersecurity in IoT Networks: A Deep Learning Approach to Anomaly Detection
- Authors: Yining Pang, Chenghan Li,
- Abstract summary: The proliferation of the Internet and smart devices has led to a rise in cybercrimes.
This paper introduces a deep learning model incorporating LSTM and attention mechanisms, a pivotal strategy in combating cybercrime in IoT networks.
- Score: 0.0
- License:
- Abstract: With the proliferation of the Internet and smart devices, IoT technology has seen significant advancements and has become an integral component of smart homes, urban security, smart logistics, and other sectors. IoT facilitates real-time monitoring of critical production indicators, enabling businesses to detect potential quality issues, anticipate equipment malfunctions, and refine processes, thereby minimizing losses and reducing costs. Furthermore, IoT enhances real-time asset tracking, optimizing asset utilization and management. However, the expansion of IoT has also led to a rise in cybercrimes, with devices increasingly serving as vectors for malicious attacks. As the number of IoT devices grows, there is an urgent need for robust network security measures to counter these escalating threats. This paper introduces a deep learning model incorporating LSTM and attention mechanisms, a pivotal strategy in combating cybercrime in IoT networks. Our experiments, conducted on datasets including IoT-23, BoT-IoT, IoT network intrusion, MQTT, and MQTTset, demonstrate that our proposed method outperforms existing baselines.
Related papers
- Machine Learning-Based Intrusion Detection and Prevention System for IIoT Smart Metering Networks: Challenges and Solutions [0.0]
This paper explores the challenges associated with securing IIoT-based smart metering networks.
It proposes a Machine Learning-based Intrusion Detection and Prevention System (IDPS) for safeguarding edge devices.
arXiv Detail & Related papers (2025-02-16T14:08:59Z) - Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
Attacks against the Internet of Things (IoT) are rising as devices, applications, and interactions become more networked and integrated.
To efficiently secure IoT devices, real-time detection of intrusion systems is critical.
This paper investigates the latest research on machine learning-based intrusion detection strategies for IoT security.
arXiv Detail & Related papers (2024-10-01T19:24:34Z) - IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - IoT Botnet Detection Using an Economic Deep Learning Model [0.0]
This paper proposes an economic deep learning-based model for detecting IoT botnet attacks along with different types of attacks.
The proposed model achieved higher accuracy than the state-of-the-art detection models using a smaller implementation budget and accelerating the training and detecting processes.
arXiv Detail & Related papers (2023-02-03T21:41:17Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning [73.85267769520715]
Internet of Things (IoT) with its growing number of deployed devices and applications raises significant challenges for network maintenance procedures.
We formulate a problem of autonomous maintenance in IoT networks as a Partially Observable Markov Decision Process.
We utilize Deep Reinforcement Learning algorithms (DRL) to train agents that decide if a maintenance procedure is in order or not and, in the former case, the proper type of maintenance needed.
arXiv Detail & Related papers (2020-12-31T11:19:51Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
This thesis is the culmination of our efforts to develop techniques to profile the network behavioral pattern of IoTs.
We develop a robust machine learning-based inference engine trained with attributes from traffic patterns.
We demonstrate real-time classification of 28 IoT devices with over 99% accuracy.
arXiv Detail & Related papers (2020-01-28T23:13:12Z) - IoT Network Behavioral Fingerprint Inference with Limited Network Trace
for Cyber Investigation: A Meta Learning Approach [0.0]
This research proposes the novel model construct that learns to infer the network behaviorial fingerprint of specific IoT.
Our solution would enable cyber investigator to identify specific IoT of interest while overcoming the constraints of having only limited network traces of the IoT.
arXiv Detail & Related papers (2020-01-14T10:42:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.