論文の概要: LLMEffiChecker: Understanding and Testing Efficiency Degradation of Large Language Models
- arxiv url: http://arxiv.org/abs/2210.03696v2
- Date: Sat, 25 May 2024 04:28:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 12:57:42.271190
- Title: LLMEffiChecker: Understanding and Testing Efficiency Degradation of Large Language Models
- Title(参考訳): LLMEffiChecker: 大規模言語モデルの理解とテスト効率の低下
- Authors: Xiaoning Feng, Xiaohong Han, Simin Chen, Wei Yang,
- Abstract要約: 我々は、最先端のLLMにおける潜在的な計算効率を理解し、テストするための最初の試みを行う。
ホワイトボックス設定とブラックボックス設定の両方で動作するツールを提案する。
ツールは平均的なLCMの応答遅延とエネルギー消費を325%から3244%、そして344%から3616%増加させることができる。
- 参考スコア(独自算出の注目度): 6.035408399083156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we make the first attempt to understand and test potential computation efficiency robustness in state-of-the-art LLMs. By analyzing the working mechanism and implementation of 20,543 public-accessible LLMs, we observe a fundamental property in LLMs that could be manipulated in an adversarial manner to reduce computation efficiency significantly. Our key motivation is to generate test inputs that could sufficiently delay the generation of EOS such that LLMs would have to go through enough iterations to satisfy the pre-configured threshold. We present \tool, which can work under both white-box setting and black-box setting. In the white-box scenario, \tool develops a gradient-guided technique that searches for a minimal and unnoticeable perturbation at character-level, token-level, and structure-level. In the black-box scenario, \tool employs a causal inference-based approach to find critical tokens and similarly applies three levels of imperceptible perturbation to them. Both the white-box and black-box settings effectively delay the appearance of EOS, compelling these inputs to reach the naturally-unreachable threshold. To demonstrate the effectiveness of \tool, we conduct a systematic evaluation on nine public-available LLMs: Google T5, AllenAI WMT14, Helsinki-NLP translator, Facebook FairSeq, UNICAMP-DL translator, MarianMT, Google FLAN-T5, MBZUAI LaMini-GPT and Salesforce CodeGen. Experimental results show that \tool can increase on average LLMs' response latency and energy consumption by 325\% to 3244\% and 344\% to 3616\%, respectively, by perturbing just one character or token in the input sentence.
- Abstract(参考訳): 本稿では,現状のLLMにおける計算効率の堅牢性を理解し,検証するための最初の試みを行う。
20,543個のパブリックアクセス可能なLCMの動作機構と実装を分析して,計算効率を著しく低減するために,逆向きに操作できるLCMの基本特性を観察する。
我々の主要な動機は、事前設定されたしきい値を満たすのに十分なイテレーションを経なければならないように、EOSの生成を十分に遅らせるテストインプットを生成することです。
ホワイトボックス設定とブラックボックス設定の両方で動作可能な \tool を提示する。
ホワイトボックスのシナリオでは、 \toolは、文字レベル、トークンレベル、構造レベルで、最小限で目立たない摂動を探索する勾配誘導技術を開発した。
ブラックボックスのシナリオでは、シャトールはクリティカルトークンを見つけるために因果推論に基づくアプローチを採用し、同様に3段階の知覚できない摂動をそれらに適用する。
ホワイトボックスとブラックボックスの設定の両方がEOSの出現を効果的に遅らせ、これらの入力が自然に到達できない閾値に達するように促した。
Google T5, AllenAI WMT14, Helsinki-NLP Translator, Facebook FairSeq, UNICAMP-DL Translator, MarianMT, Google FLAN-T5, MBZUAI LaMini-GPT, Salesforce CodeGen。
実験の結果,入力文中の1文字またはトークンだけを摂動させることで,平均LLMの応答遅延とエネルギー消費を325\%から3244\%,344\%から3616\%に増加させることができることがわかった。
関連論文リスト
- Breaking the Ceiling of the LLM Community by Treating Token Generation as a Classification for Ensembling [3.873482175367558]
本稿では,Large Language Model (LLM) による各トークンの生成を,アンサンブルのための分類(GaC)として扱う。
実験では、試験、数学、推論などいくつかのベンチマークで最先端のLCMをアンサンブルし、我々の手法が既存のコミュニティのパフォーマンスを損なうことを観察する。
論文 参考訳(メタデータ) (2024-06-18T13:17:26Z) - I-LLM: Efficient Integer-Only Inference for Fully-Quantized Low-Bit Large Language Models [20.070306492164427]
学習後の量子化は、大きな言語モデルの推論を加速する強力な技術として機能する。
既存の作業は、推論中にかなりの数の浮動小数点(FP)操作を必要とする。
この制限は、エッジとクラウドデバイス上の大きな言語モデルのデプロイを妨げる。
大規模言語モデルに適した整数のみの完全量子化PTQフレームワークであるI-LLMを提案する。
論文 参考訳(メタデータ) (2024-05-28T05:56:11Z) - Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs [63.29737699997859]
大規模言語モデル(LLM)は、マルチモーダルな微調整をせずに、マルチモーダルなタスクにおいて印象的なパフォーマンスを示した。
本研究では,画像,ビデオ,音声,テキストの入力に凍結LDMを公開し,内部表現を解析する。
論文 参考訳(メタデータ) (2024-05-26T21:31:59Z) - LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders [34.421335513040795]
大規模デコーダのみの言語モデル(LLM)は、今日のNLPタスクとベンチマークのほとんどで最先端のモデルである。
LLM2Vecは、任意のデコーダのみのLCMを強力なテキストエンコーダに変換する、単純な教師なしアプローチである。
論文 参考訳(メタデータ) (2024-04-09T02:51:05Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
大規模言語モデル(LLM)は、テキストの理解と生成において印象的な能力を示した。
ビデオベースの対話システムでビデオを効果的にエンコードし、理解する方法は、まだ解決されていない。
LLM内部の時空間シーケンスをモデル化したビデオLLMベースラインST-LLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T10:11:26Z) - Not All Layers of LLMs Are Necessary During Inference [68.88671495401483]
いくつかのタスクにおいて、Large Language Modelsはいくつかの中間層での最終的な出力に匹敵する結果が得られることを示す。
本稿では,入力インスタンスの推論処理を適応的に終了するアルゴリズムAdaInferを提案する。
論文 参考訳(メタデータ) (2024-03-04T16:23:58Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
本研究では,マルチモーダル LLM (LLMs&VLMs) 推論における重要な側面として,明示的な制御可能なテキスト生成を目標とする。
本稿では,新しい推論手法であるPrompt Highlighterを導入し,ユーザが特定のプロンプトスパンをハイライトし,生成中のフォーカスをインタラクティブに制御できるようにする。
推論中、注意重みを通して強調されたトークンでモデルを導くことで、より望ましい出力が得られます。
論文 参考訳(メタデータ) (2023-12-07T13:53:29Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
MLLM(Multimodal large language model)は、最近、テキストだけでなく、インターリーブされたマルチモーダル入力の画像を生成できることを実証した。
SEED-Bench-2は、正確な人間のアノテーションを持つ24Kの多重選択質問で構成されており、27次元にまたがっている。
我々は,23個の著名なオープンソースMLLMの性能を評価し,貴重な観察結果を要約した。
論文 参考訳(メタデータ) (2023-11-28T05:53:55Z) - Take One Step at a Time to Know Incremental Utility of Demonstration: An Analysis on Reranking for Few-Shot In-Context Learning [23.932500424117244]
In-Context Learning (ICL)は大規模言語モデル(LLM)の創発的能力である
従来の研究では、ラベルとしてLLMの出力を使用することが、デモを選択するためのトレーニングモデルに有効であることが示されている。
本稿では,LLMの出力確率に着目して,異なるユーティリティ関数の解析を行う。
論文 参考訳(メタデータ) (2023-11-16T07:03:54Z) - Remember what you did so you know what to do next [10.526351131118096]
我々は,初等科学実験のためのテキストゲームシミュレータであるScienceWorldにおいて,シミュレーションロボットが30の目標を達成する計画を立てる。
実験の結果、30種類のアクションに対して、パフォーマンスが広範囲に分散していることが示され、タスクに対する平均化が重大なパフォーマンス上の問題を隠蔽する可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-30T19:29:00Z) - Transcormer: Transformer for Sentence Scoring with Sliding Language
Modeling [95.9542389945259]
文スコアリングは文の可能性を測ることを目的としており、多くの自然言語処理シナリオで広く使われている。
文スコアリングのための新しいテキストスライディング言語モデリング(SLM)を備えたトランスフォーマーモデルであるtextitTranscormerを提案する。
論文 参考訳(メタデータ) (2022-05-25T18:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。