論文の概要: Almost-lossless compression of a low-rank random tensor
- arxiv url: http://arxiv.org/abs/2210.04041v1
- Date: Sat, 8 Oct 2022 14:50:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 19:51:51.920678
- Title: Almost-lossless compression of a low-rank random tensor
- Title(参考訳): 低ランクランダムテンソルのほとんどロスレス圧縮
- Authors: Minh Thanh Vu
- Abstract要約: 本研究では、低ランクな正準多進分解を許容するランダムな有限アルファベットテンソルのほとんどロスレス圧縮の限界を確立する。
- 参考スコア(独自算出の注目度): 7.99536002595393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we establish an asymptotic limit of almost-lossless compression
of a random, finite alphabet tensor which admits a low-rank canonical polyadic
decomposition.
- Abstract(参考訳): 本研究では, ランダムな有限アルファベットテンソルの漸近的な圧縮限界を定め, 低ランクの正準多進分解を許容する。
関連論文リスト
- A Multi-resolution Low-rank Tensor Decomposition [10.196333441334895]
階層的な方法でテンソルを記述するために,多分解能の低ランクテンソル分解を提案する。
分解の中心的な考え方は、テンソルを複数の低次元テンソルに再キャストし、異なる解像度で構造を利用することである。
論文 参考訳(メタデータ) (2024-05-27T19:44:29Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
我々は,PCAが信号の大きさの臨界値で計算的に困難になることを示す。
我々は、与えられた次数の不変量に対して明示的でほぼ直交的な基底を与える新しい対象の集合を定義する。
また、異なるアンサンブルを区別する新しい問題も分析できます。
論文 参考訳(メタデータ) (2024-04-29T14:33:24Z) - Variance Reduction and Low Sample Complexity in Stochastic Optimization
via Proximal Point Method [5.025654873456757]
本論文は,提案手法の収束性に関する高い確率保証を得るために,低サンプリング複雑性を確立する。
近位サブプロブレムを解くためにサブルーチンが開発され、分散還元のための新しい技術としても機能する。
論文 参考訳(メタデータ) (2024-02-14T07:34:22Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
制約の少ない仮定の下で高確率収束結果のアルゴリズムを提案する。
これらの結果は、標準機能クラスに適合しない問題を最適化するために検討された手法の使用を正当化する。
論文 参考訳(メタデータ) (2023-02-02T10:37:23Z) - A note on diffusion limits for stochastic gradient descent [0.0]
勾配アルゴリズムにおける雑音の役割を明確にしようとする理論の多くは、ガウス雑音を持つ微分方程式による勾配降下を広く近似している。
本稿では, 自然に発生する騒音を提示する新しい理論的正当化法を提案する。
論文 参考訳(メタデータ) (2022-10-20T13:27:00Z) - Polynomial convergence of iterations of certain random operators in
Hilbert space [2.732936573198251]
本稿では,SGDアルゴリズムにインスパイアされた無限次元空間上の演算子の族におけるランダム反復列の収束について検討する。
収束率は初期状態に依存するが、ランダム性は最適定数係数の選択においてのみ役割を果たすことを示す。
論文 参考訳(メタデータ) (2022-02-04T17:48:29Z) - Maximum Entropy Reinforcement Learning with Mixture Policies [54.291331971813364]
MaxEntアルゴリズムを用いて混合エントロピーのトラクタブル近似を構築する。
我々は、それが限界エントロピーの合計と密接に関連していることを示しています。
我々は, 混合ポリシーケースに対するsoft actor-critic (sac) のアルゴリズム的変種を導出し, 一連の連続制御タスクで評価する。
論文 参考訳(メタデータ) (2021-03-18T11:23:39Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
The inequality and non-asymptotic properties of approximation procedure with Polyak-Ruppert averaging。
一定のステップサイズと無限大となる反復数を持つ平均的反復数に対する中心極限定理(CLT)を証明する。
論文 参考訳(メタデータ) (2020-04-09T17:54:18Z) - Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth
Non-Convex Optimization [25.680334940504405]
本稿では,制約問題に対する運動量を持つ非滑らかな過渡法の割合の収束性を確立する。
問題としては、制約のないケースが、最先端技術よりも弱い仮定の下でどのように分析できるかを示す。
論文 参考訳(メタデータ) (2020-02-13T12:10:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。