論文の概要: A Multi-resolution Low-rank Tensor Decomposition
- arxiv url: http://arxiv.org/abs/2406.18560v1
- Date: Mon, 27 May 2024 19:44:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:00:20.794653
- Title: A Multi-resolution Low-rank Tensor Decomposition
- Title(参考訳): 多分解能低ランクテンソル分解
- Authors: Sergio Rozada, Antonio G. Marques,
- Abstract要約: 階層的な方法でテンソルを記述するために,多分解能の低ランクテンソル分解を提案する。
分解の中心的な考え方は、テンソルを複数の低次元テンソルに再キャストし、異なる解像度で構造を利用することである。
- 参考スコア(独自算出の注目度): 10.196333441334895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The (efficient and parsimonious) decomposition of higher-order tensors is a fundamental problem with numerous applications in a variety of fields. Several methods have been proposed in the literature to that end, with the Tucker and PARAFAC decompositions being the most prominent ones. Inspired by the latter, in this work we propose a multi-resolution low-rank tensor decomposition to describe (approximate) a tensor in a hierarchical fashion. The central idea of the decomposition is to recast the tensor into \emph{multiple} lower-dimensional tensors to exploit the structure at different levels of resolution. The method is first explained, an alternating least squares algorithm is discussed, and preliminary simulations illustrating the potential practical relevance are provided.
- Abstract(参考訳): 高階テンソルの(効率的で同相な)分解は、様々な分野の多くの応用において基本的な問題である。
タッカーとPARAFACの分解が最も顕著な論文である。
後者に着想を得たこの研究では、階層的な方法でテンソルを記述する(近似)ために、多分解能の低ランクテンソル分解を提案する。
分解の中心的な考え方は、テンソルを低次元テンソルに再キャストし、異なる解像度で構造を利用することである。
提案手法をまず説明し、最小二乗アルゴリズムを交互に検討し、実用的妥当性を示す予備シミュレーションを提案する。
関連論文リスト
- Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
我々は,PCAが信号の大きさの臨界値で計算的に困難になることを示す。
我々は、与えられた次数の不変量に対して明示的でほぼ直交的な基底を与える新しい対象の集合を定義する。
また、異なるアンサンブルを区別する新しい問題も分析できます。
論文 参考訳(メタデータ) (2024-04-29T14:33:24Z) - ADMM-MM Algorithm for General Tensor Decomposition [7.0326155922512275]
提案アルゴリズムは3つの基本損失関数(ell$-loss, $ell$-loss, KL divergence)と様々な低ランクテンソル分解モデル(CP, Tucker, TT, TR)をサポートする。
提案したアルゴリズムにより広帯域のアプリケーションを解くことができ、プラグイン・アンド・プレイ方式で既存のテンソル分解モデルに容易に拡張できることを示す。
論文 参考訳(メタデータ) (2023-12-19T00:17:34Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Decomposition of linear tensor transformations [0.0]
本研究の目的は, 正確なテンソル分解のための数学的枠組みを開発することである。
論文では3つの異なる問題を導出する。
論文 参考訳(メタデータ) (2023-09-14T16:14:38Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
本稿では, 拡散サンプリング法とクリロフ部分空間法を相乗的に組み合わせた, 新規で効率的な拡散サンプリング手法を提案する。
具体的には、ツイーディの公式による分母化標本における接空間がクリロフ部分空間を成すならば、その分母化データによるCGは、接空間におけるデータの整合性更新を確実に維持する。
提案手法は,従来の最先端手法よりも80倍以上高速な推論時間を実現する。
論文 参考訳(メタデータ) (2023-03-10T07:42:49Z) - Fast Learnings of Coupled Nonnegative Tensor Decomposition Using Optimal Gradient and Low-rank Approximation [7.265645216663691]
交互勾配法(CoNCPD-APG)により最適化された新しい非負のCANDECOMP/PARAFAC分解アルゴリズムを提案する。
提案手法は,低ランク近似をCONCPD-APG法と組み合わせることで,分解品質を損なうことなく計算負担を大幅に削減することができる。
論文 参考訳(メタデータ) (2023-02-10T08:49:36Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - More Efficient Sampling for Tensor Decomposition [2.28438857884398]
CPおよびテンソルリング分解のためのサンプリングベースALS法を提案する。
本稿では, 特徴抽出実験において, 詳細な理論的解析と手法の適用について述べる。
論文 参考訳(メタデータ) (2021-10-14T18:00:31Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
スペクトルctを用いたマルチマテリアル画像再構成のためのモデルベース最大後課題の解決法を提案する。
特に,プラグイン画像復号化機能に基づく正規化最適化問題について提案する。
スペクトルct材料分解の数値的および実験的結果を示す。
論文 参考訳(メタデータ) (2021-03-25T15:20:10Z) - Enhanced nonconvex low-rank approximation of tensor multi-modes for
tensor completion [1.3406858660972554]
我々は、新しい低ランク近似テンソルマルチモード(LRATM)を提案する。
ブロックバウンド法に基づくアルゴリズムは,提案手法を効率的に解くために設計されている。
3種類の公開多次元データセットの数値計算結果から,本アルゴリズムは様々な低ランクテンソルを復元可能であることが示された。
論文 参考訳(メタデータ) (2020-05-28T08:53:54Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
本稿では,テンソル低ランクモデルに基づくマルチビュースペクトルクラスタリング(MVSC)の問題について検討する。
MVSCに適合する新しい構造テンソル低ランクノルムを設計する。
提案手法は最先端の手法よりもかなり優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T11:52:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。