Dynamical quantum phase transitions in SYK Lindbladians
- URL: http://arxiv.org/abs/2210.04093v2
- Date: Thu, 3 Aug 2023 18:38:28 GMT
- Title: Dynamical quantum phase transitions in SYK Lindbladians
- Authors: Kohei Kawabata, Anish Kulkarni, Jiachen Li, Tokiro Numasawa, Shinsei
Ryu
- Abstract summary: We study the open quantum dynamics of the Sachdev-Ye-Kitaev (SYK) model.
We find that the dissipative form factor exhibits dynamical quantum phase transitions.
- Score: 3.790109645356671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the open quantum dynamics of the Sachdev-Ye-Kitaev (SYK) model
described by the Lindblad master equation, where the SYK model is coupled to
Markovian reservoirs with jump operators that are either linear or quadratic in
the Majorana fermion operators. Of particular interest for us is the time
evolution of the dissipative form factor, which quantifies the average overlap
between the initial and time-evolved density matrices as an open quantum
generalization of the Loschmidt echo. We find that the dissipative form factor
exhibits dynamical quantum phase transitions. We analytically demonstrate a
discontinuous dynamical phase transition in the limit of large number of
fermion flavors, which is formally akin to the thermal phase transition in the
two-coupled SYK model between the black-hole and wormhole phases. We also find
continuous dynamical phase transitions that do not have counterparts in the
two-coupled SYK model. While the phase transitions are sharp in the limit of
large number of fermion flavors, their qualitative signatures are present even
for the finite number of fermion flavors, as we show numerically.
Related papers
- Dynamical Quantum Phase Transition and Thermal Equilibrium in the Lattice Thirring Model [2.1677452722087884]
We simulate the evolution of the lattice Thirring model quenched out of equilibrium in both the critical and massive phases.
We identify a threshold in the energy density of the initial state, necessary for a dynamical quantum phase transition to be present.
arXiv Detail & Related papers (2024-07-16T00:51:01Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Dynamical quantum phase transitions in the one-dimensional extended
Fermi-Hubbard model [0.0]
We study the emergence of dynamical quantum phase transitions (DQPTs) in a half-filled one-dimensional lattice.
We identify several types of sudden interaction quenches which lead to DQPTs.
State-of-the-art cold-atom quantum simulators constitute ideal platforms to implement several reported DQPTs experimentally.
arXiv Detail & Related papers (2021-09-16T04:12:50Z) - Quantum geometric tensor and quantum phase transitions in the
Lipkin-Meshkov-Glick model [0.0]
We build the classical Hamiltonian using Bloch coherent states and find its stationary points.
They exhibit the presence of a ground state quantum phase transition, where a bifurcation occurs.
For a sign change in one Hamiltonian parameter, the same phenomenon is observed in the highest energy state.
arXiv Detail & Related papers (2021-05-24T21:48:34Z) - Dynamical Topological Quantum Phase Transitions at Criticality [0.0]
We contribute to expanding the systematic understanding of the interrelation between the equilibrium quantum phase transition and the dynamical quantum phase transition (DQPT)
Specifically, we find that dynamical quantum phase transition relies on the existence of massless it propagating quasiparticles as signaled by their impact on the Loschmidt overlap.
The underlying two dimensional model reveals gapless modes, which do not couple to the dynamical quantum phase transitions, while relevant massless quasiparticles present periodic nonanalytic signatures on the Loschmidt amplitude.
arXiv Detail & Related papers (2021-04-09T13:38:39Z) - Finite-component dynamical quantum phase transitions [0.0]
We show two types of dynamical quantum phase transitions (DQPTs) in a quantum Rabi model.
One refers to distinct phases according to long-time averaged order parameters, the other is focused on the non-analytical behavior emerging in the rate function of the Loschmidt echo.
We find the critical times at which the rate function becomes non-analytical, showing its associated critical exponent as well as the corrections introduced by a finite frequency ratio.
arXiv Detail & Related papers (2020-08-31T17:31:17Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.