論文の概要: Towards Real-Time Temporal Graph Learning
- arxiv url: http://arxiv.org/abs/2210.04114v1
- Date: Sat, 8 Oct 2022 22:14:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 18:31:30.662046
- Title: Towards Real-Time Temporal Graph Learning
- Title(参考訳): リアルタイム時間グラフ学習に向けて
- Authors: Deniz Gurevin, Mohsin Shan, Tong Geng, Weiwen Jiang, Caiwen Ding and
Omer Khan
- Abstract要約: 本稿では、時間グラフ構築を行い、低次元ノード埋め込みを生成し、オンライン環境でニューラルネットワークモデルを訓練するエンドツーエンドグラフ学習パイプラインを提案する。
- 参考スコア(独自算出の注目度): 10.647431919265346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, graph representation learning has gained significant
popularity, which aims to generate node embeddings that capture features of
graphs. One of the methods to achieve this is employing a technique called
random walks that captures node sequences in a graph and then learns embeddings
for each node using a natural language processing technique called Word2Vec.
These embeddings are then used for deep learning on graph data for
classification tasks, such as link prediction or node classification. Prior
work operates on pre-collected temporal graph data and is not designed to
handle updates on a graph in real-time. Real world graphs change dynamically
and their entire temporal updates are not available upfront. In this paper, we
propose an end-to-end graph learning pipeline that performs temporal graph
construction, creates low-dimensional node embeddings, and trains multi-layer
neural network models in an online setting. The training of the neural network
models is identified as the main performance bottleneck as it performs repeated
matrix operations on many sequentially connected low-dimensional kernels. We
propose to unlock fine-grain parallelism in these low-dimensional kernels to
boost performance of model training.
- Abstract(参考訳): 近年,グラフ表現学習が盛んになり,グラフの特徴を捉えたノード埋め込みの生成が目指されている。
これを実現する方法の1つは、ランダムウォークと呼ばれるテクニックを使用して、グラフ内のノードシーケンスをキャプチャし、Word2Vecと呼ばれる自然言語処理技術を使用して各ノードの埋め込みを学習する。
これらの埋め込みは、リンク予測やノード分類といった分類タスクのためのグラフデータの深層学習に使用される。
事前の作業は、事前収集されたテンポラリグラフデータで動作し、グラフの更新をリアルタイムに処理するように設計されていない。
実世界のグラフは動的に変化し、その時間更新全体が事前に利用できない。
本稿では、時間グラフ構築を行い、低次元ノード埋め込みを生成し、オンライン環境で多層ニューラルネットワークモデルを訓練するエンドツーエンドグラフ学習パイプラインを提案する。
ニューラルネットワークモデルのトレーニングは、多くのシーケンシャルに連結された低次元カーネル上で繰り返し行列演算を行うため、主なパフォーマンスボトルネックとして認識される。
モデルトレーニングの性能を高めるために,これらの低次元カーネルの微細粒並列性を解き放つことを提案する。
関連論文リスト
- Learning on Large Graphs using Intersecting Communities [13.053266613831447]
MPNNは、各ノードの隣人からのメッセージを集約することで、入力グラフ内の各ノードの表現を反復的に更新する。
MPNNは、あまりスパースではないため、すぐに大きなグラフの禁止になるかもしれない。
本稿では,入力グラフを交差するコミュニティグラフ (ICG) として近似することを提案する。
論文 参考訳(メタデータ) (2024-05-31T09:26:26Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - DOTIN: Dropping Task-Irrelevant Nodes for GNNs [119.17997089267124]
最近のグラフ学習アプローチでは、学習のためのグラフのサイズを減らすためのプール戦略が導入されている。
我々はDOTIN(underlineDrunderlineopping underlineTask-underlineIrrelevant underlineNodes)と呼ばれる新しいアプローチを設計し、グラフのサイズを減らす。
本手法は,グラフ分類やグラフ編集距離を含むグラフレベルのタスクにおいて,GATを約50%高速化する。
論文 参考訳(メタデータ) (2022-04-28T12:00:39Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - Learning Graph Representations [0.0]
グラフニューラルネットワーク(GNN)は、大きな動的グラフデータセットに対する洞察を得るための効率的な方法である。
本稿では,グラフ畳み込みニューラルネットワークのオートエンコーダとソーシャル・テンポラル・グラフ・ニューラルネットワークについて論じる。
論文 参考訳(メタデータ) (2021-02-03T12:07:55Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Lifelong Graph Learning [6.282881904019272]
連続グラフ学習問題を正規グラフ学習問題に変換することにより、グラフ学習と生涯学習を橋渡しする。
機能グラフネットワーク(FGN)は,ウェアラブルデバイスを用いた生涯の人間行動認識と特徴マッチングという2つのアプリケーションにおいて,優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2020-09-01T18:21:34Z) - Time-varying Graph Representation Learning via Higher-Order Skip-Gram
with Negative Sampling [0.456877715768796]
我々は,スキップグラム埋め込み手法が行列分解を暗黙的に行うという事実に基づいて構築する。
負のサンプリングを持つ高次スキップグラムは、ノードと時間の役割を乱すことができることを示す。
提案手法を時間分解型対面近接データを用いて実証的に評価し,学習した時間変化グラフ表現が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-06-25T12:04:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。