論文の概要: Estimating Neural Reflectance Field from Radiance Field using Tree
Structures
- arxiv url: http://arxiv.org/abs/2210.04217v1
- Date: Sun, 9 Oct 2022 10:21:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 17:40:18.972972
- Title: Estimating Neural Reflectance Field from Radiance Field using Tree
Structures
- Title(参考訳): 木構造を用いた放射場からのニューラルリフレクタンス場の推定
- Authors: Xiu Li, Xiao Li, Yan Lu
- Abstract要約: 本研究では,物体のニューラルリフレクタンス場(NReF)を,未知の照明下での多視点画像の集合から推定する手法を提案する。
NReFは3次元形状と物体の視認性を表しており、画像のみから推定することは困難である。
提案手法は,Neural Radiance Field (NeRF) をプロキシ表現として利用することでこの問題を解決し,さらに分解を行う。
- 参考スコア(独自算出の注目度): 29.431165709718794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new method for estimating the Neural Reflectance Field (NReF) of
an object from a set of posed multi-view images under unknown lighting. NReF
represents 3D geometry and appearance of objects in a disentangled manner, and
are hard to be estimated from images only. Our method solves this problem by
exploiting the Neural Radiance Field (NeRF) as a proxy representation, from
which we perform further decomposition. A high-quality NeRF decomposition
relies on good geometry information extraction as well as good prior terms to
properly resolve ambiguities between different components. To extract
high-quality geometry information from radiance fields, we re-design a new
ray-casting based method for surface point extraction. To efficiently compute
and apply prior terms, we convert different prior terms into different type of
filter operations on the surface extracted from radiance field. We then employ
two type of auxiliary data structures, namely Gaussian KD-tree and octree, to
support fast querying of surface points and efficient computation of surface
filters during training. Based on this, we design a multi-stage decomposition
optimization pipeline for estimating neural reflectance field from neural
radiance fields. Extensive experiments show our method outperforms other
state-of-the-art methods on different data, and enable high-quality free-view
relighting as well as material editing tasks.
- Abstract(参考訳): 本研究では,物体のニューラルリフレクタンス場(NReF)を,未知の照明下での多視点画像の集合から推定する手法を提案する。
NReFは3次元形状と物体の視認性を表しており、画像のみから推定することは困難である。
提案手法は,Neural Radiance Field (NeRF) をプロキシ表現として利用することでこの問題を解決し,さらに分解を行う。
高品質なNeRF分解は、異なるコンポーネント間のあいまいさを適切に解決するために、優れた幾何情報抽出と優れた事前条件に依存する。
放射光場から高品質な幾何学情報を抽出するため,表面点抽出のための新しいレイキャスティング法を再設計した。
先行項を効率よく計算し,適用するために,異なる先行項を放射場から抽出した表面上の異なる種類のフィルタ演算に変換する。
次に,2種類の補助データ構造,すなわちガウスKD木とオクツリーを用いて,表面点の高速クエリとトレーニング中の表面フィルタの効率的な計算を支援する。
そこで我々は,ニューラルレイディアンス場からニューラルリフレクタンス場を推定するための多段階分解最適化パイプラインを設計した。
大規模な実験により,本手法は異なるデータに対して他の最先端手法よりも優れており,高品質なフリービューリライティングや素材編集作業を実現している。
関連論文リスト
- NePF: Neural Photon Field for Single-Stage Inverse Rendering [6.977356702921476]
多視点画像の逆レンダリングに対処するために,新しい単一ステージフレームワークNePF(Neural Photon Field)を提案する。
NePFは、神経暗黙表面の重み関数の背後にある物理的意味を完全に活用することで、この統一を実現する。
我々は本手法を実データと合成データの両方で評価する。
論文 参考訳(メタデータ) (2023-11-20T06:15:46Z) - NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering [23.482941494283978]
本稿では,マルチビュー画像やビデオから可照性神経表面を復元するNeuS-PIR法を提案する。
NeRFや離散メッシュに基づく手法とは異なり,提案手法は暗黙のニューラルサーフェス表現を用いて高品質な幾何学を再構築する。
本手法は,現代のグラフィックスエンジンとシームレスに統合可能なリライトなどの高度なアプリケーションを実現する。
論文 参考訳(メタデータ) (2023-06-13T09:02:57Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
既存のニューラルレージアンス場(NeRF)法は反射物体の存在に悩まされている。
並列部分空間における特徴場の群を用いてシーンを表現するマルチスペースニューラルレイディアンス場(MS-NeRF)を提案する。
提案手法は,高品質シーンのレンダリングにおいて,既存の単一空間NeRF法よりも優れていた。
論文 参考訳(メタデータ) (2023-05-07T13:11:07Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - NeILF++: Inter-Reflectable Light Fields for Geometry and Material
Estimation [36.09503501647977]
我々は静的なシーンの照明を1つのニューラルインシデント光場(NeILF)と1つのニューラルラディアンス場(NeRF)として定式化する。
提案手法は, 幾何再構成の品質, 材料推定精度, 新規なビューレンダリングの忠実度の観点から, 最先端の結果が得られる。
論文 参考訳(メタデータ) (2023-03-30T04:59:48Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
逆レンダリング手法は、多視点RGB画像から幾何学、材料、照明を推定することを目的としている。
本稿では,多視点画像から材料と照明を分解するエンドツーエンドの逆レンダリングパイプラインを提案する。
論文 参考訳(メタデータ) (2023-03-29T12:05:19Z) - Differentiable Rendering with Reparameterized Volume Sampling [2.717399369766309]
ビュー合成において、ニューラルネットワークは、シーン画像のスパースセットに基づいて、基礎となる密度と放射場を近似する。
このレンダリングアルゴリズムは、完全に微分可能であり、フィールドの勾配に基づく最適化を容易にする。
逆変換サンプリングに基づく単純なエンドツーエンドの微分可能サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-21T19:56:50Z) - PVSeRF: Joint Pixel-, Voxel- and Surface-Aligned Radiance Field for
Single-Image Novel View Synthesis [52.546998369121354]
シングルビューRGB画像からニューラル放射場を再構成する学習フレームワークPVSeRFを提案する。
本稿では,明示的な幾何学的推論を取り入れ,放射場予測のための画素アラインな特徴と組み合わせることを提案する。
このような幾何学的特徴の導入は、外観と幾何学の絡み合いを改善するのに有効であることを示す。
論文 参考訳(メタデータ) (2022-02-10T07:39:47Z) - Learning Neural Light Fields with Ray-Space Embedding Networks [51.88457861982689]
我々は、コンパクトで、光線に沿った統合放射率を直接予測する新しいニューラル光場表現を提案する。
提案手法は,Stanford Light Field データセットのような,高密度の前方向きデータセットの最先端品質を実現する。
論文 参考訳(メタデータ) (2021-12-02T18:59:51Z) - NeRFactor: Neural Factorization of Shape and Reflectance Under an
Unknown Illumination [60.89737319987051]
照明条件が不明な物体の多視点像から物体の形状と空間的反射率を復元する問題に対処する。
これにより、任意の環境照明下でのオブジェクトの新たなビューのレンダリングや、オブジェクトの材料特性の編集が可能になる。
論文 参考訳(メタデータ) (2021-06-03T16:18:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。