論文の概要: Break the Wall Between Homophily and Heterophily for Graph
Representation Learning
- arxiv url: http://arxiv.org/abs/2210.05382v1
- Date: Sat, 8 Oct 2022 19:37:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 14:28:23.358369
- Title: Break the Wall Between Homophily and Heterophily for Graph
Representation Learning
- Title(参考訳): グラフ表現学習におけるホモフィリーとヘテロフィリーの壁分割
- Authors: Xiao Liu, Lijun Zhang, Hui Guan
- Abstract要約: ホモフィリーとヘテロフィリーは、2つの連結ノードが同様の性質を持つかどうかを記述するグラフの固有の性質である。
本研究は, グラフ表現学習に不可欠なエゴノード特徴, 集約ノード特徴, グラフ構造特徴を含む3つのグラフ特徴を同定する。
OGNNと呼ばれる新しいGNNモデルを提案し、3つのグラフの特徴を全て抽出し、それらを適応的に融合させ、ホモフィリーのスペクトル全体にわたって一般化する。
- 参考スコア(独自算出の注目度): 25.445073413243925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Homophily and heterophily are intrinsic properties of graphs that describe
whether two linked nodes share similar properties. Although many Graph Neural
Network (GNN) models have been proposed, it remains unclear how to design a
model so that it can generalize well to the whole spectrum of homophily. This
work addresses the challenge by identifying three graph features, including the
ego node feature, the aggregated node feature, and the graph structure feature,
that are essential for graph representation learning. It further proposes a new
GNN model called OGNN (Omnipotent Graph Neural Network) that extracts all three
graph features and adaptively fuses them to achieve generalizability across the
whole spectrum of homophily. Extensive experiments on both synthetic and real
datasets demonstrate the superiority (average rank 1.56) of our OGNN compared
with state-of-the-art methods.
- Abstract(参考訳): ホモフィリーとヘテロフィリーは、2つの連結ノードが同様の性質を持つかどうかを記述するグラフの固有の性質である。
多くのグラフニューラルネットワーク(GNN)モデルが提案されているが、ホモフィリーのスペクトル全体に対してうまく一般化できるようにモデルをどのように設計するかは定かではない。
本研究は, グラフ表現学習に不可欠なエゴノード特徴, 集約ノード特徴, グラフ構造特徴を含む3つのグラフ特徴を特定することで, 課題に対処する。
さらに、omnipotent graph neural network(omnipotent graph neural network)と呼ばれる新しいgnnモデルも提案している。
合成データと実データの両方に関する広範な実験は、最先端の手法と比較して、我々のognnの優越性(平均ランク 1.56)を示している。
関連論文リスト
- The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
ヘテロフィリー・スノーフレーク仮説を導入し、ヘテロ親和性グラフの研究をガイドし、促進するための効果的なソリューションを提供する。
観察の結果,我々のフレームワークは多種多様なタスクのための多目的演算子として機能することがわかった。
さまざまなGNNフレームワークに統合することができ、パフォーマンスを詳細に向上し、最適なネットワーク深さを選択するための説明可能なアプローチを提供する。
論文 参考訳(メタデータ) (2024-06-18T12:16:00Z) - Finding the Missing-half: Graph Complementary Learning for
Homophily-prone and Heterophily-prone Graphs [48.79929516665371]
ホモフィリーなエッジを持つグラフは、同じクラスでノードを接続する傾向がある。
ヘテロフィ的傾向のあるエッジは、異なるクラスを持つノード間の関係を構築する傾向がある。
既存のGNNはトレーニング中にオリジナルのグラフのみを取る。
論文 参考訳(メタデータ) (2023-06-13T08:06:10Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering [15.764819403555512]
グラフを好適なGNNモデルが見つかる前に、まずホモ親和性あるいはヘテロ親和性として識別することは不可能である。
本稿では,グラフ再構成,混合フィルタ,二重グラフクラスタリングネットワークという3つの重要な要素を含むグラフクラスタリング手法を提案する。
我々の手法は異種グラフ上で他者を支配している。
論文 参考訳(メタデータ) (2023-05-03T01:49:01Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting [32.69196871253339]
本稿では,学習タスクに関係のないグラフエッジを適応的に識別する新しいエッジ分割GNN(ES-GNN)フレームワークを提案する。
本稿では,ES-GNNを非交叉グラフ記述問題の解とみなすことができることを示す。
論文 参考訳(メタデータ) (2022-05-27T01:29:03Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
グラフニューラルネットワーク(GNN)は、しばしばグラフ分類において強いホモフィリを仮定し、ヘテロフィリを考えることは滅多にない。
We developed a novel GNN architecture called IHGNN (short for Incorporated Heterophily into Graph Neural Networks)
我々は、様々なグラフデータセット上でIHGNNを実証的に検証し、グラフ分類のための最先端のGNNよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T06:48:35Z) - GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both
Homophily and Heterophily [24.742449127169586]
グラフニューラルネットワーク(GNN)は、さまざまなグラフベースの機械学習タスクで広く使用されている。
ノードレベルのタスクでは、GNNはグラフのホモフィリーな性質をモデル化する強力な力を持つ。
両カーネルの特徴変換と選択ゲートに基づく新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2021-10-29T13:44:09Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs [6.018995094882323]
グラフニューラルネットワーク(GNN)は、グラフ上の予測タスクのために広く研究されている。
ほとんどのGNNは、局所的ホモフィリー、すなわち地域住民の強い類似性を仮定している。
基本となるホモフィリーによって制限されることなく、任意のグラフを扱うことができる柔軟なGNNモデルを提案する。
論文 参考訳(メタデータ) (2021-03-26T00:35:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。