Variance-Based Sensitivity Analysis of $\Lambda$-type Quantum Memory
- URL: http://arxiv.org/abs/2210.05530v1
- Date: Tue, 11 Oct 2022 15:18:24 GMT
- Title: Variance-Based Sensitivity Analysis of $\Lambda$-type Quantum Memory
- Authors: Kai Shinbrough and Virginia O. Lorenz
- Abstract summary: We investigate the sensitivity of $Lambda$-type quantum memory to experimental fluctuations and drift.
We find the parameters that a quantum memory is most sensitive to depend on the quantum memory protocol being employed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The storage and retrieval of photonic quantum states, quantum memory, is a
key resource for a wide range of quantum applications. Here we investigate the
sensitivity of $\Lambda$-type quantum memory to experimental fluctuations and
drift. We use a variance-based approach, focusing on the effects of
fluctuations and drift on memory efficiency. We consider shot-to-shot
fluctuations of the memory parameters, and separately we consider longer
timescale drift of the control field parameters. We find the parameters that a
quantum memory is most sensitive to depend on the quantum memory protocol being
employed, where the observed sensitivity agrees with physical interpretation of
the protocols. We also present a general framework that is applicable to other
figures of merit beyond memory efficiency. These results have practical
ramifications for quantum memory experiments.
Related papers
- Theoretical framework for quantum associative memories [0.8437187555622164]
Associative memory refers to the ability to relate a memory with an input and targets the restoration of corrupted patterns.
We develop a comprehensive framework for a quantum associative memory based on open quantum system dynamics.
arXiv Detail & Related papers (2024-08-26T13:46:47Z) - Local disclosure of quantum memory in non-Markovian dynamics [0.0]
Non-Markovian processes may arise in physics due to memory effects of environmental degrees of freedom.
We propose a criterion to test locally for a truly quantum memory.
arXiv Detail & Related papers (2023-10-02T13:47:28Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Broadband Quantum Memory in Atomic Ensembles [4.893152131023541]
We review a central challenge to achieving broadband quantum memory in atomic ensembles.
We also review the theory underlying atomic ensemble quantum memory.
We examine the state-of-the-art performance of broadband atomic ensemble quantum memories.
arXiv Detail & Related papers (2023-01-20T19:14:56Z) - Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light [40.96261204117952]
In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states.
The experiment was built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source.
Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations.
arXiv Detail & Related papers (2022-09-17T12:59:09Z) - High-performance cavity-enhanced quantum memory with warm atomic cell [1.0539847330971805]
We report a high-performance cavity-enhanced electromagnetically-induced-transparency memory with warm atomic cell.
It has been experimentally demonstrated that the average fidelities for a set of input coherent states with different phases and amplitudes within a Gaussian distribution have exceeded the classical benchmark fidelities.
arXiv Detail & Related papers (2022-06-17T01:59:26Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - A hybrid quantum image edge detector for the NISQ era [62.997667081978825]
We propose a hybrid method for quantum edge detection based on the idea of a quantum artificial neuron.
Our method can be practically implemented on quantum computers, especially on those of the current noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2022-03-22T22:02:09Z) - High-fidelity State Transfer Between Leaky Quantum Memories [0.0]
We derive the optimal analytical quantum-state-transfer control solutions for two disparate quantum memory blocks.
Using the SLH formalism description of quantum network theory, we calculate the full quantum dynamics of system populations.
arXiv Detail & Related papers (2020-05-26T21:53:03Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.