論文の概要: An Energy-Efficient Spiking Neural Network for Finger Velocity Decoding
for Implantable Brain-Machine Interface
- arxiv url: http://arxiv.org/abs/2210.06287v1
- Date: Fri, 7 Oct 2022 12:58:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 16:10:33.325571
- Title: An Energy-Efficient Spiking Neural Network for Finger Velocity Decoding
for Implantable Brain-Machine Interface
- Title(参考訳): 埋め込み型脳機械インタフェースのための指速度復号のためのエネルギー効率の高いスパイクニューラルネットワーク
- Authors: Jiawei Liao, Lars Widmer, Xiaying Wang, Alfio Di Mauro, Samuel R.
Nason-Tomaszewski, Cynthia A. Chestek, Luca Benini, Taekwang Jang
- Abstract要約: 組込み型回帰タスクのためのニューラルパワーネットワーク(SNN)デコーダを提案する。
提案したSNNデコーダは, オフライン指速度デコーダにおける最先端のANNデコーダと同等の係数相関を達成している。
- 参考スコア(独自算出の注目度): 11.786044345820459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain-machine interfaces (BMIs) are promising for motor rehabilitation and
mobility augmentation. High-accuracy and low-power algorithms are required to
achieve implantable BMI systems. In this paper, we propose a novel spiking
neural network (SNN) decoder for implantable BMI regression tasks. The SNN is
trained with enhanced spatio-temporal backpropagation to fully leverage its
ability in handling temporal problems. The proposed SNN decoder achieves the
same level of correlation coefficient as the state-of-the-art ANN decoder in
offline finger velocity decoding tasks, while it requires only 6.8% of the
computation operations and 9.4% of the memory access.
- Abstract(参考訳): 脳-機械インタフェース(BMI)は運動のリハビリテーションと移動性増強を約束している。
組込み可能なBMIシステムを実現するには,高精度かつ低消費電力のアルゴリズムが必要である。
本稿では,埋め込み可能なBMI回帰タスクのための新しいスパイキングニューラルネットワーク(SNN)デコーダを提案する。
SNNは、時空間問題を扱う能力を完全に活用するために、時空間バックプロパゲーションの強化で訓練されている。
提案したSNNデコーダは,オフライン指速度復号処理における最先端のANNデコーダと同じレベルの相関係数を達成し,計算処理の6.8%とメモリアクセスの9.4%しか必要としない。
関連論文リスト
- STOP: Spatiotemporal Orthogonal Propagation for Weight-Threshold-Leakage Synergistic Training of Deep Spiking Neural Networks [11.85044871205734]
疎疎なバイナリアクティベーションに基づくディープニューラルネットワーク(SNN)モデルは、効率的で高精度なSNNディープラーニングアルゴリズムを欠いている。
我々のアルゴリズムは、シナプス重みを発射する完全相乗的学習アルゴリズムと、ニューロンのしきい値とスパイク因子を併用することにより、SNNの精度を向上させる。
統合された時間的フォワードトレースベースのフレームワークの下では、前方パスにすべての時間ステップのニューラルステートを格納するための巨大なメモリ要件を緩和する。
本手法は,資源に制限があるが高精度なインサイト学習が望まれるエッジインテリジェントシナリオに対して,より有効な方法である。
論文 参考訳(メタデータ) (2024-11-17T14:15:54Z) - Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Multiscale fusion enhanced spiking neural network for invasive BCI neural signal decoding [13.108613110379961]
本稿では,MFSNN(Multiscale Fusion Spiking Neural Network)を用いた新しいアプローチを提案する。
MFSNNは、人間の視覚知覚に見られる並列処理とマルチスケール機能融合をエミュレートし、リアルタイム、効率的、エネルギーを節約する神経信号復号を可能にする。
MFSNNは、GRUなどの従来のニューラルネットワーク手法を精度と計算効率の両方で超越している。
論文 参考訳(メタデータ) (2024-09-14T09:53:30Z) - Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces [42.72938925647165]
皮質内脳-機械界面(iBMI)は麻痺患者の生活を劇的に改善する可能性がある。
現在のiBMIは、ハードウェアと配線が大きすぎるため、スケーラビリティとモビリティの制限に悩まされている。
無線iBMIにおける組込みニューラルデコーディングのためのハイブリッドスパイキングニューラルネットワークについて検討している。
論文 参考訳(メタデータ) (2024-09-06T17:48:44Z) - Decoding finger velocity from cortical spike trains with recurrent spiking neural networks [6.404492073110551]
侵襲的脳-機械インタフェース(BMI)は運動障害患者の生活の質を著しく向上させる。
BMIは信頼性の高い復号化性能を提供しながら、厳格なレイテンシとエネルギー制約を満たす必要がある。
2匹のマカクザルの皮質スパイク列から指の速度を復号するためにRSNNを訓練した。
論文 参考訳(メタデータ) (2024-09-03T10:15:33Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - A Resource-efficient Spiking Neural Network Accelerator Supporting
Emerging Neural Encoding [6.047137174639418]
スパイキングニューラルネットワーク(SNN)は、その低消費電力乗算自由コンピューティングにより、最近勢いを増している。
SNNは、大規模なモデルのための人工知能ニューラルネットワーク(ANN)と同様の精度に達するために、非常に長いスパイク列車(1000台まで)を必要とする。
ニューラルエンコーディングでSNNを効率的にサポートできる新しいハードウェアアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-06T10:56:25Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。