論文の概要: Architectural Exploration of Hybrid Neural Decoders for Neuromorphic Implantable BMI
- arxiv url: http://arxiv.org/abs/2505.05983v1
- Date: Fri, 09 May 2025 12:15:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.253747
- Title: Architectural Exploration of Hybrid Neural Decoders for Neuromorphic Implantable BMI
- Title(参考訳): ニューロモルフィックなBMI用ハイブリッドニューラルデコーダの探索
- Authors: Vivek Mohan, Biyan Zhou, Zhou Wang, Anil Bharath, Emmanuel Drakakis, Arindam Basu,
- Abstract要約: 本研究は、ニューロモルフィックな脳-機械界面(Neu-iBMI)のための効率的なデコードパイプラインを提供する。
スパイク検出器 (EvFilter-SPD) としても機能する可変イベントフィルタ (EvFilter) を導入し, それぞれ192X と 554X でデコードされたイベント数を著しく削減した。
- 参考スコア(独自算出の注目度): 5.76010717601678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents an efficient decoding pipeline for neuromorphic implantable brain-machine interfaces (Neu-iBMI), leveraging sparse neural event data from an event-based neural sensing scheme. We introduce a tunable event filter (EvFilter), which also functions as a spike detector (EvFilter-SPD), significantly reducing the number of events processed for decoding by 192X and 554X, respectively. The proposed pipeline achieves high decoding performance, up to R^2=0.73, with ANN- and SNN-based decoders, eliminating the need for signal recovery, spike detection, or sorting, commonly performed in conventional iBMI systems. The SNN-Decoder reduces computations and memory required by 5-23X compared to NN-, and LSTM-Decoders, while the ST-NN-Decoder delivers similar performance to an LSTM-Decoder requiring 2.5X fewer resources. This streamlined approach significantly reduces computational and memory demands, making it ideal for low-power, on-implant, or wearable iBMIs.
- Abstract(参考訳): 本研究は,ニューロモルフィックな脳-機械インタフェース(Neu-iBMI)のための効率的なデコードパイプラインを提案する。
スパイク検出器 (EvFilter-SPD) としても機能する可変イベントフィルタ (EvFilter) を導入し, それぞれ192X と 554X でデコードされたイベント数を著しく削減した。
提案したパイプラインは、従来のiBMIシステムで一般的に行われている信号回復、スパイク検出、ソートの必要性を排除し、ANNおよびSNNベースのデコーダを用いて、R^2=0.73までの高い復号性能を実現する。
SNN-Decoder は NN- や LSTM-Decoder に比べて 5-23X で必要とされる計算とメモリを削減し、ST-NN-Decoder は 2.5倍のリソースを必要とする LSTM-Decoder と同様のパフォーマンスを提供する。
この合理化アプローチは計算とメモリの要求を大幅に減らし、低消費電力、実装上、ウェアラブルのiBMIに最適である。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Multiscale fusion enhanced spiking neural network for invasive BCI neural signal decoding [13.108613110379961]
本稿では,MFSNN(Multiscale Fusion Spiking Neural Network)を用いた新しいアプローチを提案する。
MFSNNは、人間の視覚知覚に見られる並列処理とマルチスケール機能融合をエミュレートし、リアルタイム、効率的、エネルギーを節約する神経信号復号を可能にする。
MFSNNは、GRUなどの従来のニューラルネットワーク手法を精度と計算効率の両方で超越している。
論文 参考訳(メタデータ) (2024-09-14T09:53:30Z) - A Cryogenic Memristive Neural Decoder for Fault-tolerant Quantum Error Correction [0.0]
インメモリ・クロスバー(IMC)アーキテクチャに基づくニューラルデコーダの設計と解析を行う。
ハードウェアを意識したリトレーニング手法を開発し、フィデリティ損失を軽減する。
この研究は、フォールトトレラントQECの統合のためのスケーラブルで高速で低消費電力のMCCハードウェアへの経路を提供する。
論文 参考訳(メタデータ) (2023-07-18T17:46:33Z) - RN-Net: Reservoir Nodes-Enabled Neuromorphic Vision Sensing Network [7.112892720740359]
イベントベースのカメラは、生物学的視覚系のスパイクと非同期スパイク表現にインスパイアされている。
本稿では,局所的および大域的貯水池の動的時間エンコーディングと統合された単純な畳み込み層に基づくニューラルネットワークアーキテクチャを提案する。
RN-Netはこれまでに報告されたDV128 Gestureの99.2%の最高精度を達成しており、DVS Lipデータセットの67.5%の最高精度の1つである。
論文 参考訳(メタデータ) (2023-03-19T21:20:45Z) - An Energy-Efficient Spiking Neural Network for Finger Velocity Decoding
for Implantable Brain-Machine Interface [11.786044345820459]
組込み型回帰タスクのためのニューラルパワーネットワーク(SNN)デコーダを提案する。
提案したSNNデコーダは, オフライン指速度デコーダにおける最先端のANNデコーダと同等の係数相関を達成している。
論文 参考訳(メタデータ) (2022-10-07T12:58:28Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
本稿では,量子化されたニューラルネットワーク(QNN)をマルチブランチバイナリネットワークに分解するために,-1,+1を用いた新しい符号化方式を提案する。
本稿では,大規模画像分類,オブジェクト検出,セマンティックセグメンテーションにおける提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:11:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。