論文の概要: Q-TOD: A Query-driven Task-oriented Dialogue System
- arxiv url: http://arxiv.org/abs/2210.07564v1
- Date: Fri, 14 Oct 2022 06:38:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 16:24:30.552848
- Title: Q-TOD: A Query-driven Task-oriented Dialogue System
- Title(参考訳): Q-TOD:クエリ駆動型タスク指向対話システム
- Authors: Xin Tian, Yingzhan Lin, Mengfei Song, Siqi Bao, Fan Wang, Huang He,
Shuqi Sun, Hua Wu
- Abstract要約: 本稿では,新しい問合せ型タスク指向対話システム,すなわちQ-TODを紹介する。
対話コンテキストから必須情報をクエリに抽出し、応答生成のための関連する知識レコードを検索する。
提案するQ-TODの有効性を評価するために,3つの公開タスク指向対話データセットに対するクエリアノテーションを収集する。
- 参考スコア(独自算出の注目度): 33.18698942938547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing pipelined task-oriented dialogue systems usually have difficulties
adapting to unseen domains, whereas end-to-end systems are plagued by
large-scale knowledge bases in practice. In this paper, we introduce a novel
query-driven task-oriented dialogue system, namely Q-TOD. The essential
information from the dialogue context is extracted into a query, which is
further employed to retrieve relevant knowledge records for response
generation. Firstly, as the query is in the form of natural language and not
confined to the schema of the knowledge base, the issue of domain adaption is
alleviated remarkably in Q-TOD. Secondly, as the query enables the decoupling
of knowledge retrieval from the generation, Q-TOD gets rid of the issue of
knowledge base scalability. To evaluate the effectiveness of the proposed
Q-TOD, we collect query annotations for three publicly available task-oriented
dialogue datasets. Comprehensive experiments verify that Q-TOD outperforms
strong baselines and establishes a new state-of-the-art performance on these
datasets.
- Abstract(参考訳): 既存のパイプライン化されたタスク指向対話システムは、通常、目に見えない領域に適応することが困難である。
本稿では,新しい問合せ型タスク指向対話システム,すなわちQ-TODを紹介する。
対話コンテキストから必要な情報をクエリに抽出し、関連する知識レコードを取得して応答を生成する。
第一に、クエリは自然言語の形式であり、知識ベースのスキーマに限定されないため、ドメイン適応の問題はQ-TODにおいて著しく緩和される。
第2に、このクエリにより、世代からの知識検索を分離できるため、Q-TODは知識ベーススケーラビリティの問題を取り除くことができる。
提案するQ-TODの有効性を評価するために,3つの公開タスク指向対話データセットに対するクエリアノテーションを収集する。
総合的な実験により、Q-TODは強いベースラインを上回っ、これらのデータセット上で新しい最先端のパフォーマンスを確立する。
関連論文リスト
- Knowledge-Retrieval Task-Oriented Dialog Systems with Semi-Supervision [22.249113574918034]
既存のタスク指向ダイアログ(TOD)システムは、スロットと値の観点からダイアログの状態を追跡し、データベースに問い合わせて応答を生成する。
現実のアプリケーションでは,ユーザの発話がノイズが多いため,対話状態を正確に追跡し,関連する知識を正しく確保することは困難である。
そこで本研究では,TODシステムにおける知識選択を高速化する検索手法を提案する。
論文 参考訳(メタデータ) (2023-05-22T16:29:20Z) - Dual Semantic Knowledge Composed Multimodal Dialog Systems [114.52730430047589]
本稿では,MDS-S2という新しいマルチモーダルタスク指向対話システムを提案する。
コンテキスト関連属性と関係知識を知識ベースから取得する。
また、合成された応答表現から意味情報を抽出するために、潜在クエリ変数のセットを考案する。
論文 参考訳(メタデータ) (2023-05-17T06:33:26Z) - DialogQAE: N-to-N Question Answer Pair Extraction from Customer Service
Chatlog [34.69426306212259]
そこで,N-to-NQA抽出タスクを提案する。
5つのカスタマサービスデータセット上で良好に機能する、エンドツーエンドと2段階のバリエーションを備えた、生成的/識別的タグ付けベースの一連の方法を紹介します。
論文 参考訳(メタデータ) (2022-12-14T09:05:14Z) - Topic-Aware Response Generation in Task-Oriented Dialogue with
Unstructured Knowledge Access [20.881612071473118]
課題指向対話における話題情報をよりよく統合するために,トピック認識応答生成(TARG)を提案する。
TARGは、対話発話や外部知識ソースよりも重要度重み付け方式を導出するために、複数の話題認識型アテンション機構を組み込んでいる。
論文 参考訳(メタデータ) (2022-12-10T22:32:28Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
対話システム研究における既存の研究は、主にタスク指向の対話とチャットを独立したドメインとして扱う。
本研究では,タスク指向対話と知識ベースチップチャットを一つのモデルに効果的に統合する方法について検討する。
論文 参考訳(メタデータ) (2022-05-11T16:01:03Z) - Retrieval-Free Knowledge-Grounded Dialogue Response Generation with
Adapters [52.725200145600624]
軽量アダプタで事前学習した言語モデルに事前知識を注入し、検索プロセスをバイパスする KnowExpert を提案する。
実験結果から,KnowExpertは検索ベースラインと相容れない性能を示した。
論文 参考訳(メタデータ) (2021-05-13T12:33:23Z) - BERT-CoQAC: BERT-based Conversational Question Answering in Context [10.811729691130349]
履歴変換をシステム内に組み込むためのBERTという,パブリックに利用可能なプリトレーニング言語モデルに基づくフレームワークを紹介する。
実験の結果,我々のフレームワークはQuACリーダボードの最先端モデルと同等の性能を示した。
論文 参考訳(メタデータ) (2021-04-23T03:05:17Z) - Unstructured Knowledge Access in Task-oriented Dialog Modeling using
Language Inference, Knowledge Retrieval and Knowledge-Integrative Response
Generation [44.184890645068485]
外部知識に富んだダイアログシステムは、サポートするデータベース/APIの範囲外にあるユーザクエリを処理できる。
タスク指向対話システムのパイプラインを構成するKDEAK, KnowleDgEFactor, Ens-GPTの3つのサブシステムを提案する。
実験の結果,提案パイプラインシステムはベースラインを上回り,高品質な応答を生成することがわかった。
論文 参考訳(メタデータ) (2021-01-15T11:24:32Z) - Question Answering over Knowledge Bases by Leveraging Semantic Parsing
and Neuro-Symbolic Reasoning [73.00049753292316]
本稿では,意味解析と推論に基づくニューロシンボリック質問回答システムを提案する。
NSQAはQALD-9とLC-QuAD 1.0で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-12-03T05:17:55Z) - A Survey on Complex Question Answering over Knowledge Base: Recent
Advances and Challenges [71.4531144086568]
知識ベース(KB)に対する質問回答(QA)は、自然言語の質問に自動的に答えることを目的としている。
研究者は、よりKBのトリプルと制約推論を必要とする単純な質問から複雑な質問へと注意を移した。
論文 参考訳(メタデータ) (2020-07-26T07:13:32Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。