論文の概要: Activity-aware Human Mobility Prediction with Hierarchical Graph Attention Recurrent Network
- arxiv url: http://arxiv.org/abs/2210.07765v3
- Date: Sat, 28 Dec 2024 09:14:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:00:32.741978
- Title: Activity-aware Human Mobility Prediction with Hierarchical Graph Attention Recurrent Network
- Title(参考訳): 階層型グラフアテンションリカレントネットワークを用いた活動を考慮した人体移動予測
- Authors: Yihong Tang, Junlin He, Zhan Zhao,
- Abstract要約: 本稿では,HGARN(Hierarchical Graph Attention Recurrent Network)を用いて人体移動予測を行う。
具体的には、過去の移動記録に基づいて階層グラフを構築し、複雑な時間-活動-位置の依存関係をキャプチャするために階層グラフ注意モジュールを使用する。
モデル評価において,HGARNの既存手法に対して,既存手法(例えば,以前に訪れた場所に戻る)と爆発的手法(すなわち,新しい場所を訪れる)の両方で,HGARNの性能を検証した。
- 参考スコア(独自算出の注目度): 6.09493819953104
- License:
- Abstract: Human mobility prediction is a fundamental task essential for various applications in urban planning, location-based services and intelligent transportation systems. Existing methods often ignore activity information crucial for reasoning human preferences and routines, or adopt a simplified representation of the dependencies between time, activities and locations. To address these issues, we present Hierarchical Graph Attention Recurrent Network (HGARN) for human mobility prediction. Specifically, we construct a hierarchical graph based on past mobility records and employ a Hierarchical Graph Attention Module to capture complex time-activity-location dependencies. This way, HGARN can learn representations with rich human travel semantics to model user preferences at the global level. We also propose a model-agnostic history-enhanced confidence (MAHEC) label to incorporate each user's individual-level preferences. Finally, we introduce a Temporal Module, which employs recurrent structures to jointly predict users' next activities and their associated locations, with the former used as an auxiliary task to enhance the latter prediction. For model evaluation, we test the performance of HGARN against existing state-of-the-art methods in both the recurring (i.e., returning to a previously visited location) and explorative (i.e., visiting a new location) settings. Overall, HGARN outperforms other baselines significantly in all settings based on two real-world human mobility data benchmarks. These findings confirm the important role that human activities play in determining mobility decisions, illustrating the need to develop activity-aware intelligent transportation systems. Source codes of this study are available at https://github.com/YihongT/HGARN.
- Abstract(参考訳): ヒューマンモビリティ予測は、都市計画、位置情報サービス、インテリジェント交通システムにおける様々な応用に不可欠な基本課題である。
既存の方法は、人間の嗜好やルーチンの推論に不可欠な活動情報を無視したり、時間、活動、場所間の依存関係を単純化した表現を採用することが多い。
これらの問題に対処するため,HGARN(Hierarchical Graph Attention Recurrent Network)を提案する。
具体的には、過去の移動記録に基づいて階層グラフを構築し、複雑な時間-活動-位置の依存関係をキャプチャするために階層グラフ注意モジュールを使用する。
このようにして、HGARNはリッチな人間の旅行セマンティクスで表現を学び、世界レベルでユーザーの好みをモデル化することができる。
また、各ユーザの個人レベルの嗜好を組み込むため、モデルに依存しない履歴強調信頼ラベル(MAHEC)を提案する。
最後に,ユーザの次の活動と関連する場所を協調的に予測する再帰的構造と,後者の予測を強化する補助的タスクとして使用するテンポラルモジュールを提案する。
モデル評価において,HGARNの既存手法に対して,既存手法(例えば,以前に訪れた場所に戻る)と爆発的手法(すなわち,新しい場所を訪れる)の両方で,HGARNの性能を検証した。
HGARNは、実際の2つの人間のモビリティデータベンチマークに基づいて、すべての設定において、他のベースラインを大きく上回っている。
これらの知見は、人間の活動がモビリティ決定において重要な役割を担い、活動に配慮したインテリジェント交通システムを開発する必要性を浮き彫りにしている。
この研究のソースコードはhttps://github.com/YihongT/HGARN.comで公開されている。
関連論文リスト
- TrajGEOS: Trajectory Graph Enhanced Orientation-based Sequential Network for Mobility Prediction [10.876862361004944]
次位置予測タスクのための textbfTrajectory textbfGraph textbfEnhanced textbfOrientation-based textbfSequential network (TrajGEOS) を提案する。
論文 参考訳(メタデータ) (2024-12-26T07:18:38Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - Regions are Who Walk Them: a Large Pre-trained Spatiotemporal Model
Based on Human Mobility for Ubiquitous Urban Sensing [24.48869607589127]
本研究では,人体移動データに含まれるリッチな情報を活用するために,トラジェクトリ(RAW)に基づく大規模時空間モデルを提案する。
提案手法は,人間の移動データのみに特色を持たず,ユーザのプロファイリングや地域分析に一定の関連性を示す。
論文 参考訳(メタデータ) (2023-11-17T11:55:11Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Spatiotemporal-Augmented Graph Neural Networks for Human Mobility Simulation [35.89805766554052]
本稿では,SRpatio-Augmented gaph Neural Network という,位置の動的時間的効果をモデル化する新しいフレームワークを提案する。
STARフレームワークは、行動対応を捉えるために様々な時間グラフを設計し、異なる場所の居住地をシミュレートする新しいブランチを構築し、最終的にその期間を逆向きに最適化する。
論文 参考訳(メタデータ) (2023-06-15T11:47:45Z) - Context-aware multi-head self-attentional neural network model for next
location prediction [19.640761373993417]
我々は、歴史的位置情報から位置パターンを学習するマルチヘッド自己注意ニューラルネットワーク(A)を利用する。
提案モデルが他の最先端予測モデルより優れていることを示す。
我々は,提案モデルが文脈を考慮した移動予測に不可欠であると信じている。
論文 参考訳(メタデータ) (2022-12-04T23:40:14Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
本稿では,複雑で非線形に進化する動的ユーザの嗜好をモデル化する,自己変調型注意ネットワークを提案する。
提案手法がトップNシーケンシャルなレコメンデーションタスクに与える影響を実証的に示すとともに,3つの大規模実世界のデータセットによる結果から,我々のモデルが最先端のパフォーマンスを達成できることを示す。
論文 参考訳(メタデータ) (2022-03-30T03:54:11Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
シーケンシャルレコメンデーションのための動的表現学習モデル(DRL-SRe)を考案する。
両面から動的に特徴付けるためのユーザ・イテム相互作用をモデル化するため,提案モデルでは,時間スライス毎にグローバルなユーザ・イテム相互作用グラフを構築した。
モデルが微粒な時間情報を捕捉することを可能にするため,連続時間スライス上での補助的時間予測タスクを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:44:27Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - Individual Mobility Prediction: An Interpretable Activity-based Hidden
Markov Approach [6.1938383008964495]
本研究では、個人移動予測のためのアクティビティに基づくモデリングフレームワークを開発する。
提案モデルでは,最先端の長期記憶モデル(LSTM)と同様の予測性能が得られることを示す。
論文 参考訳(メタデータ) (2021-01-11T16:11:27Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。