The equivalence principle and inertial-gravitational decoherence
- URL: http://arxiv.org/abs/2210.08586v2
- Date: Wed, 15 Nov 2023 19:03:26 GMT
- Title: The equivalence principle and inertial-gravitational decoherence
- Authors: Giorgio Torrieri
- Abstract summary: We look at proposals for "witnessing" quantum gravity via entanglement from the point of view of Bronstein's original objection to a quantization of gravity.
We argue that this "failure" is actually an inherent feature of any quantum description.
In the second part, we speculate on how an exact realization of the equivalence principle might be implemented in an effective quantum field theory.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work is divided into two parts. The first examines recent proposals for
"witnessing" quantum gravity via entanglement from the point of view of
Bronstein's original objection to a quantization of gravity. Using techniques
from open quantum systems we sketch how unavoidable decoherence from both
inertial and gravitational backreaction between probe and detector could spoil
the experimental detection of the quantization of gravity. We argue that this
"failure" is actually an inherent feature of any quantum description that
attempts to incorporate the equivalence principle exactly within quantum
dynamics. In the second part, we speculate on how an exact realization of the
equivalence principle might be implemented in an effective quantum field theory
via the general covariance of correlators. While we are far from giving an
explicit construction of such a theory we point out some features and
consequences of such a program.
Related papers
- The composition rule for quantum systems is not the only possible one [0.0]
We argue that the composition postulate deserves to be experimentally scrutinised independently of the other features of quantum theory.
We formulate a family of operational theories that are solely distinguished from quantum theory by their system-composition rule.
arXiv Detail & Related papers (2024-11-24T19:31:13Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - What is "quantum" about quantum gravity? [0.0]
We argue that if both the equivalence principle and quantum mechanics continue to survive experimental tests, that this favors epistemic'' interpretations of quantum mechanics.
arXiv Detail & Related papers (2024-05-13T21:19:50Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Decoherence of a composite particle induced by a weak quantized
gravitational field [0.0]
We study the decoherence of a quantum system induced by the quantized gravitational field and by its own quantum nature.
Our results may be important in providing a better understanding of many phenomena like the decoherence induced by the gravitational time-dilation.
arXiv Detail & Related papers (2023-08-14T20:49:16Z) - Is gravitational entanglement evidence for the quantization of
spacetime? [0.0]
Experiments witnessing the entanglement between two particles interacting only via the gravitational field have been proposed as a test whether gravity must be quantized.
We present a parametrized model for the gravitational interaction of quantum matter on a classical spacetime, inspired by the de Broglie-Bohm formulation of quantum mechanics.
arXiv Detail & Related papers (2022-05-02T14:37:24Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Consistency of quantum computation and the equivalence principle [0.0]
equivalence principle seems to be crucial for analysis of quantum effects in gravity.
In this paper we consider the question if the equivalence principle has to hold for consistency of performing quantum computation in gravitational field.
arXiv Detail & Related papers (2020-12-30T00:47:15Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.