論文の概要: ReasonChainQA: Text-based Complex Question Answering with Explainable
Evidence Chains
- arxiv url: http://arxiv.org/abs/2210.08763v1
- Date: Mon, 17 Oct 2022 06:07:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 16:21:56.918138
- Title: ReasonChainQA: Text-based Complex Question Answering with Explainable
Evidence Chains
- Title(参考訳): ReasonChainQA: 説明可能なエビデンスチェーンを用いたテキストベース複合質問回答
- Authors: Minjun Zhu, Yixuan Weng, Shizhu He, Kang Liu, Jun Zhao
- Abstract要約: 説明的および明示的なエビデンス連鎖を有するベンチマーク textbfReasonChainQA を提案する。
ReasonChainQAは、回答生成とエビデンス連鎖抽出という2つのサブタスクから構成される。
教師付きおよび教師なし検索に関する追加実験は、ReasonChainQAの重要性を十分に示している。
- 参考スコア(独自算出の注目度): 15.837457557803507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability of reasoning over evidence has received increasing attention in
question answering (QA). Recently, natural language database (NLDB) conducts
complex QA in knowledge base with textual evidences rather than structured
representations, this task attracts a lot of attention because of the
flexibility and richness of textual evidence. However, existing text-based
complex question answering datasets fail to provide explicit reasoning process,
while it's important for retrieval effectiveness and reasoning
interpretability. Therefore, we present a benchmark \textbf{ReasonChainQA} with
explanatory and explicit evidence chains. ReasonChainQA consists of two
subtasks: answer generation and evidence chains extraction, it also contains
higher diversity for multi-hop questions with varying depths, 12 reasoning
types and 78 relations. To obtain high-quality textual evidences for answering
complex question. Additional experiment on supervised and unsupervised
retrieval fully indicates the significance of ReasonChainQA. Dataset and codes
will be made publicly available upon accepted.
- Abstract(参考訳): 証拠に関する推論能力は質問応答(QA)において注目されている。
近年,自然言語データベース (NLDB) は, 構造化された表現ではなく, 文的エビデンスを用いた知識ベースで複雑なQAを行い, テキスト的エビデンスの柔軟性と豊かさから多くの注目を集めている。
しかし、既存のテキストベースの複雑な質問応答データセットは明確な推論プロセスを提供していない。
したがって、説明的および明示的なエビデンスチェーンを持つベンチマーク \textbf{reasonchainqa} を示す。
ReasonChainQAは、回答生成とエビデンス連鎖抽出という2つのサブタスクで構成され、深さの異なるマルチホップ質問の多様性、12の推論タイプ、78の関係を含んでいる。
複雑な質問に答えるための高品質なテキスト証拠を得る。
教師なし検索に関する追加実験は、ReasonChainQAの重要性を十分に示している。
データセットとコードは、受け入れられ次第公開される予定だ。
関連論文リスト
- GRS-QA -- Graph Reasoning-Structured Question Answering Dataset [50.223851616680754]
グラフ推論-構造化質問応答データセット(GRS-QA)を導入する。
既存のM-QAデータセットとは異なり、GRS-QAは推論グラフを構築することで複雑な推論経路を明示的にキャプチャする。
実験により, LLMは, 様々な推論構造を用いて, 問合せ処理を行う際に, 異なる性能を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-11-01T05:14:03Z) - Leveraging Structured Information for Explainable Multi-hop Question
Answering and Reasoning [14.219239732584368]
本研究では,マルチホップ質問応答のための抽出された意味構造(グラフ)の構築と活用について検討する。
実験結果と人的評価の結果から、我々のフレームワークはより忠実な推論連鎖を生成し、2つのベンチマークデータセットのQA性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-07T05:32:39Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Reasoning over Hierarchical Question Decomposition Tree for Explainable
Question Answering [83.74210749046551]
ヘテロジニアス知識統合のための質問分解手法を提案する。
階層的質問分解木(RoHT)を用いた新しい2段階XQAフレームワークを提案する。
複雑なQAデータセットKQA ProとMusiqueの実験は、我々のフレームワークがSOTAメソッドを著しく上回っていることを示している。
論文 参考訳(メタデータ) (2023-05-24T11:45:59Z) - HPE:Answering Complex Questions over Text by Hybrid Question Parsing and
Execution [92.69684305578957]
テキストQAにおける質問解析と実行の枠組みを提案する。
提案したフレームワークは、トップダウンの質問パースとして、ボトムアップの回答バックトラックとみなすことができる。
MuSiQue,2WikiQA,HotpotQA,およびNQに関する実験により,提案した解析およびハイブリッド実行フレームワークが,教師付き,少数ショット,ゼロショット設定における既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2023-05-12T22:37:06Z) - Grow-and-Clip: Informative-yet-Concise Evidence Distillation for Answer
Explanation [22.20733260041759]
我々は、QAモデルの解釈可能性を高めるために、解答の証拠が重要であると論じる。
我々は、証拠の概念を、情報的で簡潔で読みやすい文脈における支援事実として明確に定義する最初の人物である。
本稿では, トレードオフ情報性, 簡潔性, 可読性からエビデンスを抽出するGCEDアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-13T17:18:17Z) - Discourse Comprehension: A Question Answering Framework to Represent
Sentence Connections [35.005593397252746]
談話理解のためのモデルの構築と評価における重要な課題は、注釈付きデータの欠如である。
本稿では,ニュース文書の理解を目的としたスケーラブルなデータ収集を実現する新しいパラダイムを提案する。
得られたコーパスDCQAは、607の英語文書からなる22,430の質問応答ペアで構成されている。
論文 参考訳(メタデータ) (2021-11-01T04:50:26Z) - Exploiting Reasoning Chains for Multi-hop Science Question Answering [51.86289192292466]
我々のフレームワークは、コーパス固有のアノテーションを必要とせずに説明可能な推論を行うことができる。
ローカルチェーン情報とグローバルチェーン情報の両方に関するTextitChain対応の損失は、生成されたチェーンが遠隔監視信号として機能するようにも設計されている。
論文 参考訳(メタデータ) (2021-09-07T07:22:07Z) - Open Question Answering over Tables and Text [55.8412170633547]
オープンな質問応答(QA)では、質問に対する回答は、質問に対する回答を含む可能性のある文書を検索して分析することによって生成される。
ほとんどのオープンQAシステムは、構造化されていないテキストからのみ情報を取得することを検討している。
我々は,このタスクの性能を評価するために,新しい大規模データセット Open Table-and-Text Question Answering (OTT-QA) を提案する。
論文 参考訳(メタデータ) (2020-10-20T16:48:14Z) - QED: A Framework and Dataset for Explanations in Question Answering [27.85923397716627]
Google Natural Questionsデータセットのサブセット上に構築されたQED説明のエキスパートアノテートデータセットをリリースする。
有望な結果は、比較的少量のQEDデータのトレーニングが質問応答を改善することを示唆している。
論文 参考訳(メタデータ) (2020-09-08T23:34:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。