HOG-CNN: Integrating Histogram of Oriented Gradients with Convolutional Neural Networks for Retinal Image Classification
- URL: http://arxiv.org/abs/2507.22274v1
- Date: Tue, 29 Jul 2025 22:54:28 GMT
- Title: HOG-CNN: Integrating Histogram of Oriented Gradients with Convolutional Neural Networks for Retinal Image Classification
- Authors: Faisal Ahmed,
- Abstract summary: We propose an automated and interpretable clinical decision support framework based on a hybrid feature extraction model called HOG-CNN.<n>Our key contribution lies in the integration of handcrafted Histogram of Oriented Gradients (HOG) features with deep convolutional neural network (CNN) representations.<n>Our model achieves 98.5% accuracy and 99.2 AUC for binary DR classification, and 94.2 AUC for five-class DR classification.
- Score: 1.5939351525664014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The analysis of fundus images is critical for the early detection and diagnosis of retinal diseases such as Diabetic Retinopathy (DR), Glaucoma, and Age-related Macular Degeneration (AMD). Traditional diagnostic workflows, however, often depend on manual interpretation and are both time- and resource-intensive. To address these limitations, we propose an automated and interpretable clinical decision support framework based on a hybrid feature extraction model called HOG-CNN. Our key contribution lies in the integration of handcrafted Histogram of Oriented Gradients (HOG) features with deep convolutional neural network (CNN) representations. This fusion enables our model to capture both local texture patterns and high-level semantic features from retinal fundus images. We evaluated our model on three public benchmark datasets: APTOS 2019 (for binary and multiclass DR classification), ORIGA (for Glaucoma detection), and IC-AMD (for AMD diagnosis); HOG-CNN demonstrates consistently high performance. It achieves 98.5\% accuracy and 99.2 AUC for binary DR classification, and 94.2 AUC for five-class DR classification. On the IC-AMD dataset, it attains 92.8\% accuracy, 94.8\% precision, and 94.5 AUC, outperforming several state-of-the-art models. For Glaucoma detection on ORIGA, our model achieves 83.9\% accuracy and 87.2 AUC, showing competitive performance despite dataset limitations. We show, through comprehensive appendix studies, the complementary strength of combining HOG and CNN features. The model's lightweight and interpretable design makes it particularly suitable for deployment in resource-constrained clinical environments. These results position HOG-CNN as a robust and scalable tool for automated retinal disease screening.
Related papers
- HistoART: Histopathology Artifact Detection and Reporting Tool [37.31105955164019]
Whole Slide Imaging (WSI) is widely used to digitize tissue specimens for detailed, high-resolution examination.<n>WSI remains vulnerable to artifacts introduced during slide preparation and scanning.<n>We propose and compare three robust artifact detection approaches for WSIs.
arXiv Detail & Related papers (2025-06-23T17:22:19Z) - FundusGAN: A Hierarchical Feature-Aware Generative Framework for High-Fidelity Fundus Image Generation [35.46876389599076]
FundusGAN is a novel hierarchical feature-aware generative framework specifically designed for high-fidelity fundus image synthesis.<n>We show that FundusGAN consistently outperforms state-of-the-art methods across multiple metrics.
arXiv Detail & Related papers (2025-03-22T18:08:07Z) - Interpretable Retinal Disease Prediction Using Biology-Informed Heterogeneous Graph Representations [40.8160960729546]
Interpretability is crucial to enhance trust in machine learning models for medical diagnostics.<n>This work proposes a method that surpasses the performance of established machine learning models.
arXiv Detail & Related papers (2025-02-23T19:27:47Z) - Ocular Disease Classification Using CNN with Deep Convolutional Generative Adversarial Network [0.0]
We propose Generative Adversarial Network(GAN) based data generation technique to synthesize dataset for training CNN based classification model.<n>During testing the model classification accuracy with the original ocular image, the model achieves an accuracy rate of 78.6% for myopia, 88.6% for glaucoma, and 84.6% for cataract, with an overall classification accuracy of 84.6%.
arXiv Detail & Related papers (2025-02-14T17:47:18Z) - KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) aims to identify any anomaly as an outlier from a healthy training distribution.<n>generative models are used to learn the reconstruction of healthy brain anatomy for a given input image.<n>We propose conditioning the denoising process of diffusion models with additional information derived from a latent representation of the input image.
arXiv Detail & Related papers (2023-12-07T11:03:42Z) - Virchow: A Million-Slide Digital Pathology Foundation Model [34.38679208931425]
We present Virchow, a foundation model for computational pathology.
Virchow is a vision transformer model with 632 million parameters trained on 1.5 million hematoxylin and eosin stained whole slide images.
arXiv Detail & Related papers (2023-09-14T15:09:35Z) - AMDNet23: A combined deep Contour-based Convolutional Neural Network and
Long Short Term Memory system to diagnose Age-related Macular Degeneration [0.0]
This study operates on a AMDNet23 system of deep learning that combined the neural networks made up of convolutions (CNN) and short-term and long-term memory (LSTM) to automatically detect aged macular degeneration (AMD) disease from fundus ophthalmology.
The proposed hybrid deep AMDNet23 model demonstrates to detection of AMD ocular disease and the experimental result achieved an accuracy 96.50%, specificity 99.32%, sensitivity 96.5%, and F1-score 96.49.0%.
arXiv Detail & Related papers (2023-08-30T07:48:32Z) - Early Diagnosis of Retinal Blood Vessel Damage via Deep Learning-Powered
Collective Intelligence Models [0.3670422696827525]
The power of swarm algorithms is used to search for various combinations of convolutional, pooling, and normalization layers to provide the best model for the task.
The best TDCN model achieves an accuracy of 90.3%, AUC ROC of 0.956, and a Cohen score of 0.967.
arXiv Detail & Related papers (2022-10-17T21:38:38Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Intrapapillary Capillary Loop Classification in Magnification Endoscopy:
Open Dataset and Baseline Methodology [8.334256673330879]
We build a computer-assisted detection system that can classify still images or video frames as normal or abnormal.
We present a new benchmark dataset containing 68K binary labeled frames extracted from 114 patient videos.
The proposed method achieved an average accuracy of 91.7 % compared to the 94.7 % achieved by a group of 12 senior clinicians.
arXiv Detail & Related papers (2021-02-19T14:55:21Z) - Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network [12.161266795282915]
We propose a convolutional neural network (CNN)-based automatic classification method for accurate grading of prostate cancer (PCa) using whole slide histopathology images.
A data augmentation method named Patch-Based Image Reconstruction (PBIR) was proposed to reduce the high resolution and increase the diversity of WSIs.
A distribution correction module was developed to enhance the adaption of pretrained model to the target dataset.
arXiv Detail & Related papers (2020-11-29T06:42:08Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.