Pre-Born-Oppenheimer energies, leading-order relativistic and QED
corrections for electronically excited states of molecular hydrogen
- URL: http://arxiv.org/abs/2210.09653v3
- Date: Sun, 8 Jan 2023 12:47:09 GMT
- Title: Pre-Born-Oppenheimer energies, leading-order relativistic and QED
corrections for electronically excited states of molecular hydrogen
- Authors: Eszter Saly, D\'avid Ferenc, Edit M\'atyus
- Abstract summary: For rovibronic states corresponding to the $B$ and $B' 1Sigma_textu+$ electronic states of the hydrogen molecule, the pre-Born--Oppenheimer (four-particle) non-relativistic energy is converged to a 1-3 parts-per-billion relative precision.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For rovibronic states corresponding to the $B$ and $B'\ ^1\Sigma_\text{u}^+$
electronic states of the hydrogen molecule, the pre-Born--Oppenheimer
(four-particle) non-relativistic energy is converged to a 1-3 parts-per-billion
relative precision. The four-particle non-relativistic energy is appended with
leading-order relativistic, leading- and estimated higher-order
quantum-electrodynamics corrections. The resulting term values referenced to
the rovibronic ground state are obtained in an excellent agreement with the
experimental results. Further results are reported and discussed for other
rovibronic states assignable to the $C\ ^1\Pi_\text{u}$ and the $EF,GK,$ and
$HH\ ^1\Sigma_\text{g}^+$ electronic states.
Related papers
- Rydberg ions in coherent motional states: A new method for determining
the polarizability of Rydberg ions [71.05995184390709]
We present a method for measuring the polarizability of Rydberg ions confined in a Paul trap.
The method is easy-to-implement and applicable to different Rydberg states regardless of their principal or angular quantum numbers.
arXiv Detail & Related papers (2022-08-23T17:56:50Z) - Evaluation of the Bethe logarithm: from atom to chemical reaction [0.0]
General computational scheme for the (non-relativistic) Bethe logarithm is developed.
Implementation relies on Schwartz' method and minimization of a Hylleraas functional.
arXiv Detail & Related papers (2022-08-05T08:16:38Z) - Variational versus perturbative relativistic energies for small and
light atomic and molecular systems [0.0]
Variational and perturbative relativistic energies are computed and compared for two-electron atoms and molecules with low nuclear charge numbers.
Remaining deviations can be attributed to higher-order relativistic, also called non-radiative quantum electrodynamics (QED)
Resummation provided by the variational procedure is important already for intermediate nuclear charge numbers.
arXiv Detail & Related papers (2022-06-23T13:11:21Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Quantum phase diagram of high-pressure hydrogen [0.0]
We present the phase diagram of hydrogen and deuterium at low temperatures and high-pressure.
Our results show that the long-sought atomic metallic hydrogen forms at $577pm 10$ GPa.
We predict clear-cut optical spectroscopy and DC conductivity that can be used experimentally to distinguish between the two structural transitions.
arXiv Detail & Related papers (2022-02-11T16:25:26Z) - Power-like potentials: from the Bohr-Sommerfeld energies to exact ones [77.34726150561087]
Bohr-Sommerfeld Energies (BSE) extracted explicitly from the Bohr-Sommerfeld quantization condition are compared with the exact energies.
For physically important cases $m=1,4,6$ for the $100$th excited state BSE coincide with exact ones in 5-6 figures.
arXiv Detail & Related papers (2021-07-31T21:37:50Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - On the four-body problem in the Born-Oppenheimer approximation [0.0]
The model allows exact solvability and a critical analysis of the Born-Oppenheimer approximation.
It is shown that the sum of the first two terms of the Puiseux series, in powers of the dimensionless parameter $sigma=fracmM$, coincide exactly with the values obtained in the Born-Oppenheimer approximation.
arXiv Detail & Related papers (2020-07-29T16:43:03Z) - Ab initio properties of the NaLi molecule in the $a^3\Sigma^+$
electronic state [0.0]
We calculate the electronic and rovibrational structure of ultracold polar and magnetic molecules with spectroscopic accuracy.
We show that quantum chemistry methods are capable of predicting scattering properties of manyelectron systems.
arXiv Detail & Related papers (2020-03-26T17:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.