A Three-Mode Erasure Code for Continuous Variable Quantum Communications
- URL: http://arxiv.org/abs/2210.10230v1
- Date: Wed, 19 Oct 2022 01:12:17 GMT
- Title: A Three-Mode Erasure Code for Continuous Variable Quantum Communications
- Authors: Eduardo Villasenor, Robert Malaney
- Abstract summary: We present an error correction code capable of protecting a single-mode quantum state against erasures.
Our three-mode code protects a single-mode Continuous Variable (CV) state via a bipartite CV entangled state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum states of light being transmitted via realistic free-space channels
often suffer erasure errors due to several factors such as coupling
inefficiencies between transmitter and receiver. In this work, an error
correction code capable of protecting a single-mode quantum state against
erasures is presented. Our three-mode code protects a single-mode Continuous
Variable (CV) state via a bipartite CV entangled state. In realistic
deployments, it can almost completely reverse a single erasure on the encoded
state, and for two erasures can it improve the fidelities of received states
relative to direct transmission. The bipartite entangled state used in the
encoding can be Gaussian or non-Gaussian, with the latter further enhancing the
performance of the code. Our new code is the simplest code known that protects
a single mode against erasures and should prove useful in the construction of
practical CV quantum networks that rely on free-space optics.
Related papers
- Continuous variable dense coding under realistic non-ideal scenarios [0.0]
We derive a general formalism for the dense coding capacity (DCC) of generic two-mode Gaussian states.
We investigate the pattern of DCC of the two-mode squeezed vacuum state (TMSV) by varying the strength of the noise.
arXiv Detail & Related papers (2024-07-10T12:49:17Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Fault-Tolerant Quantum Memory using Low-Depth Random Circuit Codes [0.24578723416255752]
Low-depth random circuit codes possess many desirable properties for quantum error correction.
We design a fault-tolerant distillation protocol for preparing encoded states of one-dimensional random circuit codes.
We show through numerical simulations that our protocol can correct erasure errors up to an error rate of $2%$.
arXiv Detail & Related papers (2023-11-29T19:00:00Z) - Protecting Classical-Quantum Signals in Free Space Optical Channels [0.0]
This work presents an error correction protocol capable of protecting a signal passing through such channels by encoding it with an ancillary entangled bipartite state.
We show how, relative to non-encoded direct transmission, the protocol can improve the fidelity of transmitted coherent states over a wide range of losses and erasure probabilities.
We briefly discuss the application of our protocol to the transmission of more complex input states, such as multi-mode entangled states.
arXiv Detail & Related papers (2023-03-12T23:18:18Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - An efficient combination of quantum error correction and authentication [1.1602089225841632]
We study whether it can be done more efficiently by combining the two functionalities in a single code.
We show that the threshold code needs polylogarithmically fewer qubits to achieve the same level of security and robustness.
arXiv Detail & Related papers (2022-11-17T17:25:39Z) - Denoising Diffusion Error Correction Codes [92.10654749898927]
Recently, neural decoders have demonstrated their advantage over classical decoding techniques.
Recent state-of-the-art neural decoders suffer from high complexity and lack the important iterative scheme characteristic of many legacy decoders.
We propose to employ denoising diffusion models for the soft decoding of linear codes at arbitrary block lengths.
arXiv Detail & Related papers (2022-09-16T11:00:50Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
arXiv Detail & Related papers (2021-09-26T07:29:54Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.