論文の概要: Review of the state of the art in autonomous artificial intelligence
- arxiv url: http://arxiv.org/abs/2210.10659v1
- Date: Mon, 17 Oct 2022 09:31:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 13:43:25.422703
- Title: Review of the state of the art in autonomous artificial intelligence
- Title(参考訳): 自律型人工知能の現状と展望
- Authors: Petar Radanliev, David De Roure
- Abstract要約: 本稿では,自律型人工知能(AI)の新しい設計について述べる。
それはAutoAIと呼ばれる新しい自律型AIシステムを説明する。
この手法は自己改善アルゴリズムに基づく設計を組み立てるために用いられる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article presents a new design for autonomous artificial intelligence
(AI), based on the state-of-the-art algorithms, and describes a new autonomous
AI system called AutoAI. The methodology is used to assemble the design founded
on self-improved algorithms that use new and emerging sources of data (NEFD).
The objective of the article is to conceptualise the design of a novel AutoAI
algorithm. The conceptual approach is used to advance into building new and
improved algorithms. The article integrates and consolidates the findings from
existing literature and advances the AutoAI design into (1) using new and
emerging sources of data for teaching and training AI algorithms and (2)
enabling AI algorithms to use automated tools for training new and improved
algorithms. This approach is going beyond the state-of-the-art in AI algorithms
and suggests a design that enables autonomous algorithms to self-optimise and
self-adapt, and on a higher level, be capable to self-procreate.
- Abstract(参考訳): 本稿では、最先端のアルゴリズムに基づく自律人工知能(AI)の新しい設計を提案し、AutoAIと呼ばれる新しい自律AIシステムについて述べる。
この手法は、NEFD(new and emerging source of data)を使用する自己改善アルゴリズムに基づく設計の組み立てに使用される。
本論文の目的は,新しいAutoAIアルゴリズムの設計を概念化することである。
この概念的アプローチは、新しく改良されたアルゴリズムの構築に利用される。
本論文は,既存の文献から得られた知見を統合し,(1)AIアルゴリズムの教育と訓練のための新しいデータソースと,(2)AIアルゴリズムが新しい改良アルゴリズムをトレーニングするための自動化ツールを使用できるように,AutoAI設計を進化させる。
このアプローチはAIアルゴリズムの最先端を超えており、自律的アルゴリズムが自己最適化と自己適応を可能にし、より高いレベルで自己調達を可能にする設計を提案する。
関連論文リスト
- AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies [0.0]
人工知能(AGI)は、人工知能(AI)研究においてしばらくの間、明白な目標であった。
AGIは、人間のように、新しい問題領域にさらされ、それを学び、推論プロセスを使って意思決定する能力を持つでしょう。
本稿では,AGIの製作に向けての歩みについて述べる。
論文 参考訳(メタデータ) (2024-06-17T07:21:44Z) - Adaptation of XAI to Auto-tuning for Numerical Libraries [0.0]
説明可能なAI(XAI)技術は、AIモデル開発の合理化と、ユーザへのAI出力の説明の負担軽減を目的として、注目を集めている。
本研究は,2つの異なるプロセスに統合されたAIモデルのXAIに着目し,数値計算を行う。
論文 参考訳(メタデータ) (2024-05-12T09:00:56Z) - Towards a general framework for improving the performance of classifiers using XAI methods [0.0]
本稿では,XAI手法を用いた事前学習型ディープラーニング(DL)分類器の性能向上のためのフレームワークを提案する。
オートエンコーダベースおよびエンコーダデコーダベースと呼び、それらの重要な側面について議論する。
論文 参考訳(メタデータ) (2024-03-15T15:04:20Z) - Autonomous Vehicles: Evolution of Artificial Intelligence and Learning
Algorithms [0.0]
この研究は、長年にわたるAI/学習アルゴリズムの使用状況とタイプに関する統計的知見を提示する。
本論文では,トラックおよび自動車の精製アルゴリズムにおけるパラメータの役割について述べる。
結論は、さまざまなレベルの自律性を概説し、AIと学習アルゴリズムの微妙な使用を解明することだ。
論文 参考訳(メタデータ) (2024-02-27T17:07:18Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - An Initial Look at Self-Reprogramming Artificial Intelligence [0.0]
我々は、最初の完全自己プログラミングAIシステムを開発し、実験的に検証する。
AIベースのコンピュータコード生成をAI自体に適用することで、ニューラルネットワークのソースコードを継続的に修正し書き換えるアルゴリズムを実装します。
論文 参考訳(メタデータ) (2022-04-30T05:44:34Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
基本数学的操作をビルディングブロックとして使うだけで,完全な機械学習アルゴリズムを自動的に発見できることが示される。
汎用的な検索空間を通じて人間のバイアスを大幅に低減する新しいフレームワークを導入することでこれを実証する。
機械学習アルゴリズムをゼロから発見する上で、これらの予備的な成功は、この分野における有望な新しい方向性を示していると信じている。
論文 参考訳(メタデータ) (2020-03-06T19:00:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。