論文の概要: An Initial Look at Self-Reprogramming Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2205.00167v1
- Date: Sat, 30 Apr 2022 05:44:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 13:20:30.168441
- Title: An Initial Look at Self-Reprogramming Artificial Intelligence
- Title(参考訳): 自己プログラム型人工知能の初期展望
- Authors: Alex Sheng
- Abstract要約: 我々は、最初の完全自己プログラミングAIシステムを開発し、実験的に検証する。
AIベースのコンピュータコード生成をAI自体に適用することで、ニューラルネットワークのソースコードを継続的に修正し書き換えるアルゴリズムを実装します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid progress in deep learning research has greatly extended the
capabilities of artificial intelligence technology. Conventional AI models are
constrained to explicit human-designed algorithms, although a growing body of
work in meta-learning, neural architecture search, and related approaches have
explored algorithms that self-modify to some extent. In this paper, we develop
and experimentally validate the first fully self-reprogramming AI system.
Applying AI-based computer code generation to AI itself, we implement an
algorithm with the ability to continuously modify and rewrite its own neural
network source code.
- Abstract(参考訳): ディープラーニング研究の急速な進歩は、人工知能技術の能力を大きく広げた。
従来のAIモデルは、明示的な人間設計アルゴリズムに制約されているが、メタラーニング、ニューラルアーキテクチャサーチ、関連するアプローチでは、ある程度の自己修正アルゴリズムが研究されている。
本稿では,最初の完全自己プログラム型AIシステムの開発と実験的検討を行う。
AIベースのコンピュータコード生成をAI自体に適用することで、ニューラルネットワークのソースコードを継続的に修正し書き換えるアルゴリズムを実装します。
関連論文リスト
- Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies [0.0]
人工知能(AGI)は、人工知能(AI)研究においてしばらくの間、明白な目標であった。
AGIは、人間のように、新しい問題領域にさらされ、それを学び、推論プロセスを使って意思決定する能力を持つでしょう。
本稿では,AGIの製作に向けての歩みについて述べる。
論文 参考訳(メタデータ) (2024-06-17T07:21:44Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Review of the state of the art in autonomous artificial intelligence [0.0]
本稿では,自律型人工知能(AI)の新しい設計について述べる。
それはAutoAIと呼ばれる新しい自律型AIシステムを説明する。
この手法は自己改善アルゴリズムに基づく設計を組み立てるために用いられる。
論文 参考訳(メタデータ) (2022-10-17T09:31:51Z) - Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI
Revolution [102.45290975132406]
神経科学は長年、人工知能(AI)の進歩の重要な要因であった
我々は,AIの進歩を加速するためには,NeuroAIの基本的な研究に投資する必要があることを示唆する。
論文 参考訳(メタデータ) (2022-10-15T17:18:37Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
AIの最近の進歩は、限られた形態のニューロコンフォメーションコンピューティングの使用によってもたらされている。
ニューロコンポジションコンピューティングの新しい形式は、より堅牢で正確で理解しやすいAIシステムを生み出します。
論文 参考訳(メタデータ) (2022-05-02T18:00:10Z) - Watershed of Artificial Intelligence: Human Intelligence, Machine
Intelligence, and Biological Intelligence [0.2580765958706853]
本稿は,23年前に提案された1回学習機構と,それに続く画像分類におけるワンショット学習の成功をレビューする。
AIは、人工知能(AHI)、人工知能(AMI)、および人工知能(ABI)の3つのカテゴリに明確に分割されるべきである。
論文 参考訳(メタデータ) (2021-04-27T13:03:25Z) - AI from concrete to abstract: demystifying artificial intelligence to
the general public [0.0]
本稿では,コンクリートから抽象的(AIcon2abs)への新たな方法論,AIについて述べる。
主な戦略は、人工知能のデミスティフィケーションを促進することである。
WiSARDの軽量化により、トレーニングタスクと分類タスクの視覚化と理解が容易になる。
論文 参考訳(メタデータ) (2020-06-07T01:14:06Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
基本数学的操作をビルディングブロックとして使うだけで,完全な機械学習アルゴリズムを自動的に発見できることが示される。
汎用的な検索空間を通じて人間のバイアスを大幅に低減する新しいフレームワークを導入することでこれを実証する。
機械学習アルゴリズムをゼロから発見する上で、これらの予備的な成功は、この分野における有望な新しい方向性を示していると信じている。
論文 参考訳(メタデータ) (2020-03-06T19:00:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。