論文の概要: A kernel Stein test of goodness of fit for sequential models
- arxiv url: http://arxiv.org/abs/2210.10741v3
- Date: Thu, 13 Jul 2023 16:09:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-14 17:47:58.961365
- Title: A kernel Stein test of goodness of fit for sequential models
- Title(参考訳): 逐次モデルに対する適合の良さに関するカーネルスタイン検定
- Authors: Jerome Baum and Heishiro Kanagawa and Arthur Gretton
- Abstract要約: 提案手法は、非正規化密度の良性テストを構築するために用いられてきたカーネルSteindisrepancy(KSD)の例である。
我々は、適切なスタイン演算子を同定することで、KSDを可変次元設定に拡張し、新しいKSD適合性テストを提案する。
我々のテストは、離散的なシーケンシャルなデータベンチマークで実際によく機能することが示されている。
- 参考スコア(独自算出の注目度): 19.8408003104988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a goodness-of-fit measure for probability densities modeling
observations with varying dimensionality, such as text documents of differing
lengths or variable-length sequences. The proposed measure is an instance of
the kernel Stein discrepancy (KSD), which has been used to construct
goodness-of-fit tests for unnormalized densities. The KSD is defined by its
Stein operator: current operators used in testing apply to fixed-dimensional
spaces. As our main contribution, we extend the KSD to the variable-dimension
setting by identifying appropriate Stein operators, and propose a novel KSD
goodness-of-fit test. As with the previous variants, the proposed KSD does not
require the density to be normalized, allowing the evaluation of a large class
of models. Our test is shown to perform well in practice on discrete sequential
data benchmarks.
- Abstract(参考訳): 本稿では,長さの異なるテキスト文書や可変長列など,次元の異なる確率密度モデリング観測のための適合度尺度を提案する。
提案手法はkernel stein discrepancy(ksd)の例であり、非正規化密度に対する適合性テストの構築に用いられている。
KSD はシュタイン作用素によって定義される: テストで使用される現在の作用素は固定次元空間に適用される。
我々の主な貢献として、適切なスタイン作用素を同定して ksd を可変次元に拡張し、新しい ksd goodness-of-fit test を提案する。
以前の変種と同様に、提案されたksdは密度を正規化する必要がなく、大きなモデルのクラスを評価することができる。
我々のテストは、離散的なシーケンシャルなデータベンチマークで実際によく機能することが示されている。
関連論文リスト
- Minimax Optimal Goodness-of-Fit Testing with Kernel Stein Discrepancy [13.429541377715298]
我々は、カーネル化されたStein discrepancy (KSD) を用いた一般領域における適合性試験の極小最適性について検討する。
KSDフレームワークは、優れたテストのための柔軟なアプローチを提供し、強い分散仮定を避けます。
未知のパラメータに適応することで、対数係数まで最小限の最適性を達成できる適応テストを導入する。
論文 参考訳(メタデータ) (2024-04-12T07:06:12Z) - Using Perturbation to Improve Goodness-of-Fit Tests based on Kernelized
Stein Discrepancy [3.78967502155084]
Kernelized Stein discrepancy (KSD) は、良質なテストで広く使われているスコアベースの不一致である。
我々は、KSD試験が、ターゲットと代替分布が同一の分離モードを持つが混合比が異なる場合、低出力に悩まされることを理論的かつ実証的に示す。
論文 参考訳(メタデータ) (2023-04-28T11:13:18Z) - AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation [64.9230895853942]
ドメインの一般化は、ターゲットのドメイン情報を活用することなく、任意に困難にすることができる。
この問題に対処するためにテスト時適応(TTA)手法が提案されている。
本研究では,テスト時間適応(AdaNPC)を行うためにNon-Parametricを採用する。
論文 参考訳(メタデータ) (2023-04-25T04:23:13Z) - Controlling Moments with Kernel Stein Discrepancies [74.82363458321939]
Kernel Steindisrepancies (KSD) は分布近似の品質を測定する。
まず、弱収束制御に使用される標準KSDがモーメント収束制御に失敗することを示す。
次に、代替拡散KSDがモーメントと弱収束の両方を制御できる十分な条件を提供する。
論文 参考訳(メタデータ) (2022-11-10T08:24:52Z) - Concrete Score Matching: Generalized Score Matching for Discrete Data [109.12439278055213]
コンクレトスコア(Concrete score)とは、個別の設定のためのスコア(ステイン)の一般化である。
コンクレトスコアマッチング(Concrete Score Matching)は、サンプルからこのようなスコアを学習するフレームワークである。
論文 参考訳(メタデータ) (2022-11-02T00:41:37Z) - A Fourier representation of kernel Stein discrepancy with application to
Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces [6.437931786032493]
Kernel Stein discrepancy (KSD) は、確率測度間の差異のカーネルベースの尺度である。
我々は、分離可能なヒルベルト空間に横たわるデータの一般性において、KSDを初めて解析する。
これにより、KSDが測定を分離できることを証明できるので、実際は有効である。
論文 参考訳(メタデータ) (2022-06-09T15:04:18Z) - Generalised Kernel Stein Discrepancy(GKSD): A Unifying Approach for
Non-parametric Goodness-of-fit Testing [5.885020100736158]
KSD(Non-parametric Goodness-of-fit testing procedure)は、一般的な非正規分布を検証するための有望なアプローチである。
我々は,KSDに基づく適合性テストの実行において,異なるStein演算子を理論的に比較・解釈するための統一フレームワークである一般化カーネルSteindisrepancy(GKSD)を提案する。
論文 参考訳(メタデータ) (2021-06-23T00:44:31Z) - Uncertainty Inspired RGB-D Saliency Detection [70.50583438784571]
本稿では,データラベリングプロセスから学習することで,RGB-D値検出の不確実性を利用した最初のフレームワークを提案する。
そこで本研究では,確率的RGB-Dサリエンシ検出を実現するために,サリエンシデータラベリングプロセスにインスパイアされた生成アーキテクチャを提案する。
6つの挑戦的RGB-Dベンチマークデータセットの結果から,サリエンシマップの分布を学習する際のアプローチの優れた性能が示された。
論文 参考訳(メタデータ) (2020-09-07T13:01:45Z) - Sliced Kernelized Stein Discrepancy [17.159499204595527]
Kernelized Stein discrepancy (KSD) は、良質なテストやモデル学習に広く用いられている。
最適一次元射影上に定義されたカーネルベースのテスト関数を用いるスライスされたスタイン差分とそのスケーラブルでカーネル化された変種を提案する。
モデル学習においては,異なる相違点を持つ独立成分分析モデルを訓練することにより,既存のSteinの相違点ベースラインに対してその優位性を示す。
論文 参考訳(メタデータ) (2020-06-30T04:58:55Z) - Density of States Estimation for Out-of-Distribution Detection [69.90130863160384]
DoSEは状態推定器の密度である。
我々は、他の教師なしOOD検出器に対するDoSEの最先端性能を実証する。
論文 参考訳(メタデータ) (2020-06-16T16:06:25Z) - A Kernel Stein Test for Comparing Latent Variable Models [48.32146056855925]
本稿では、相対的適合性を示すカーネルベースの非パラメトリックテストを提案する。このテストの目的は、2つのモデルを比較することである。
本試験は, モデルから得られたサンプルに基づいて, 潜伏構造を利用せず, 相対的な最大平均離散性試験よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2019-07-01T07:46:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。