論文の概要: Reaching Through Latent Space: From Joint Statistics to Path Planning in
Manipulation
- arxiv url: http://arxiv.org/abs/2210.11779v1
- Date: Fri, 21 Oct 2022 07:25:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 16:14:48.146676
- Title: Reaching Through Latent Space: From Joint Statistics to Path Planning in
Manipulation
- Title(参考訳): 潜在空間の到達:共同統計からマニピュレーションにおける経路計画へ
- Authors: Chia-Man Hung, Shaohong Zhong, Walter Goodwin, Oiwi Parker Jones,
Martin Engelcke, Ioannis Havoutis, Ingmar Posner
- Abstract要約: 本稿では,ロボットマニピュレータのための経路計画手法を提案する。
経路は、ロボットのポーズ生成モデルの潜在空間における反復的最適化によって生成される。
我々のモデルはランダムにサンプリングされたロボットのポーズに基づいてタスク非依存で訓練されている。
- 参考スコア(独自算出の注目度): 26.38185646091712
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a novel approach to path planning for robotic manipulators, in
which paths are produced via iterative optimisation in the latent space of a
generative model of robot poses. Constraints are incorporated through the use
of constraint satisfaction classifiers operating on the same space.
Optimisation leverages gradients through our learned models that provide a
simple way to combine goal reaching objectives with constraint satisfaction,
even in the presence of otherwise non-differentiable constraints. Our models
are trained in a task-agnostic manner on randomly sampled robot poses. In
baseline comparisons against a number of widely used planners, we achieve
commensurate performance in terms of task success, planning time and path
length, performing successful path planning with obstacle avoidance on a real
7-DoF robot arm.
- Abstract(参考訳): 本稿では,ロボットのポーズ生成モデルの潜在空間における反復最適化により経路を生成できるロボットマニピュレータの経路計画手法を提案する。
制約は、同じ空間で動作する制約満足度分類器を用いて組み込まれる。
最適化は、目標達成目標と制約満足度を組み合わせるための簡単な方法を提供する、学習したモデルを通じて勾配を活用する。
我々のモデルはランダムにサンプリングされたロボットのポーズに基づいてタスク非依存で訓練されている。
広く利用されている多くのプランナーと比較して,タスク成功,計画時間,経路長の両面から,実際の7-DoFロボットアームの障害物回避による経路計画を成功させる。
関連論文リスト
- Closed-Loop Long-Horizon Robotic Planning via Equilibrium Sequence Modeling [23.62433580021779]
我々は、均衡に達するまで計画案を反復的に洗練する自己精製スキームを提唱する。
効率的なクローズドループ計画のためのネスト型平衡系列モデリング手法を考案した。
提案手法はVirtualHome-Envベンチマークで評価され,性能が向上し,推論精度が向上した。
論文 参考訳(メタデータ) (2024-10-02T11:42:49Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
本稿では,タスクとモーションプランニングを一つの検索に統一するTAMP手法を提案する。
我々のアプローチは、オフザシェルフAIサーチの計算効率を活用して、物理的に実現可能な計画が得られるような、オブジェクト中心の動作制約の抽象化に基づいている。
論文 参考訳(メタデータ) (2023-12-29T14:00:20Z) - Obstacle Avoidance for Robotic Manipulator in Joint Space via Improved
Proximal Policy Optimization [6.067589886362815]
本稿では,6-DoFマニピュレータのタスク空間から関節空間にマップするために,改良されたPPOアルゴリズムを用いて深層ニューラルネットワークを訓練する。
実ロボットでそのようなタスクを訓練するのは時間を要するので、モデルを訓練するためのシミュレーション環境を開発する。
実験結果から,ロボットは非構造環境下で1つの目標をトラッキングしたり,複数の目標に到達することができた。
論文 参考訳(メタデータ) (2022-10-03T10:21:57Z) - Reinforcement Learning with Prior Policy Guidance for Motion Planning of
Dual-Arm Free-Floating Space Robot [11.272278713797537]
提案手法は,計画精度を効率的に向上するRLに基づく手法を実現するための新しいアルゴリズムであるEfficientを提案する。
私たちのコアコントリビューションは、事前の知識ガイダンスと混合ポリシーを構築し、より合理的な報酬関数を構築するために無限ノルムを導入することです。
論文 参考訳(メタデータ) (2022-09-03T14:20:17Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
移動, 把握, 接触問題を同時に解くための効率的な運動計画フレームワークを提案する。
ハードウェア実験において提案手法を実証し, より短い計画時間で, 傾斜角45degで自由クライミングを含む様々な動作を実現できることを示す。
論文 参考訳(メタデータ) (2022-07-04T13:52:10Z) - Next Steps: Learning a Disentangled Gait Representation for Versatile
Quadruped Locomotion [69.87112582900363]
現在のプランナーは、ロボットが動いている間、キー歩行パラメータを連続的に変更することはできない。
本研究では、特定の歩行を構成する重要な姿勢位相を捉える潜在空間を学習することにより、この制限に対処する。
本研究では, 歩幅, 歩幅, 立位など, 歩行パラメータに直接対応した駆動信号マップの具体的特性を示す。
論文 参考訳(メタデータ) (2021-12-09T10:02:02Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z) - Reward Conditioned Neural Movement Primitives for Population Based
Variational Policy Optimization [4.559353193715442]
本稿では,教師あり学習における報酬に基づく政策探索問題について考察する。
本手法は, 最先端のロボット強化学習法と比較して, 学習の進歩と, サンプル効率の大幅な向上を図っている。
論文 参考訳(メタデータ) (2020-11-09T09:53:37Z) - Human-like Planning for Reaching in Cluttered Environments [11.55532557594561]
人間は、散らかった環境でオブジェクトに手を伸ばすのに驚くほど適しています。
我々は、人間の高度な操作計画を特定し、これらのスキルをロボットプランナーに転送する。
人間のようなプランナーは、最先端の標準軌道最適化アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-02-28T14:28:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。