HCL: Improving Graph Representation with Hierarchical Contrastive
Learning
- URL: http://arxiv.org/abs/2210.12020v1
- Date: Fri, 21 Oct 2022 15:07:46 GMT
- Title: HCL: Improving Graph Representation with Hierarchical Contrastive
Learning
- Authors: Jun Wang, Weixun Li, Changyu Hou, Xin Tang, Yixuan Qiao, Rui Fang,
Pengyong Li, Peng Gao, Guotong Xie
- Abstract summary: Hierarchical Contrastive Learning (HCL) framework explicitly learns graph representation in a hierarchical manner.
HCL achieves competitive performance on 12 datasets involving node classification, node clustering and graph classification.
- Score: 15.418743452614846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive learning has emerged as a powerful tool for graph representation
learning. However, most contrastive learning methods learn features of graphs
with fixed coarse-grained scale, which might underestimate either local or
global information. To capture more hierarchical and richer representation, we
propose a novel Hierarchical Contrastive Learning (HCL) framework that
explicitly learns graph representation in a hierarchical manner. Specifically,
HCL includes two key components: a novel adaptive Learning to Pool (L2Pool)
method to construct more reasonable multi-scale graph topology for more
comprehensive contrastive objective, a novel multi-channel pseudo-siamese
network to further enable more expressive learning of mutual information within
each scale. Comprehensive experimental results show HCL achieves competitive
performance on 12 datasets involving node classification, node clustering and
graph classification. In addition, the visualization of learned representation
reveals that HCL successfully captures meaningful characteristics of graphs.
Related papers
- GRE^2-MDCL: Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning [0.0]
Graph representation learning has emerged as a powerful tool for preserving graph topology when mapping nodes to vector representations.
Current graph neural network models face the challenge of requiring extensive labeled data.
We propose Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning.
arXiv Detail & Related papers (2024-09-12T03:09:05Z) - Subgraph Networks Based Contrastive Learning [5.736011243152416]
Graph contrastive learning (GCL) can solve the problem of annotated data scarcity.
Most existing GCL methods focus on the design of graph augmentation strategies and mutual information estimation operations.
We propose a novel framework called subgraph network-based contrastive learning (SGNCL)
arXiv Detail & Related papers (2023-06-06T08:52:44Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Multi-Level Graph Contrastive Learning [38.022118893733804]
We propose a Multi-Level Graph Contrastive Learning (MLGCL) framework for learning robust representation of graph data by contrasting space views of graphs.
The original graph is first-order approximation structure and contains uncertainty or error, while the $k$NN graph generated by encoding features preserves high-order proximity.
Extensive experiments indicate MLGCL achieves promising results compared with the existing state-of-the-art graph representation learning methods on seven datasets.
arXiv Detail & Related papers (2021-07-06T14:24:43Z) - Hierarchical Adaptive Pooling by Capturing High-order Dependency for
Graph Representation Learning [18.423192209359158]
Graph neural networks (GNN) have been proven to be mature enough for handling graph-structured data on node-level graph representation learning tasks.
This paper proposes a hierarchical graph-level representation learning framework, which is adaptively sensitive to graph structures.
arXiv Detail & Related papers (2021-04-13T06:22:24Z) - CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical
Graph Representation Learning [74.90535111881358]
We propose a new interpretable graph pooling framework - CommPOOL.
It can capture and preserve the hierarchical community structure of graphs in the graph representation learning process.
CommPOOL is a general and flexible framework for hierarchical graph representation learning.
arXiv Detail & Related papers (2020-12-10T21:14:18Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs.
textscSubg-Con is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information.
Compared with existing graph representation learning approaches, textscSubg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization.
arXiv Detail & Related papers (2020-09-22T01:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.