Electrostatic multipole contributions to the binding energy of electrons
- URL: http://arxiv.org/abs/2210.13986v1
- Date: Sun, 23 Oct 2022 08:23:41 GMT
- Title: Electrostatic multipole contributions to the binding energy of electrons
- Authors: A. D. Alhaidari and H. Bahlouli
- Abstract summary: We use the tridiagonal representation approach to give a reasonably accurate account for the combined effects of all these contributions to the binding energy of the electron.
As an application, we obtain the bound states of a valence electron in an atom with both electric dipole and quadrupole moments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The interaction of an electron with a local static charge distribution (e.g.,
an atom or molecule) is dominated at large distances by the radial 1/r Coulomb
potential. The second order effect comes from the non-central electric dipole
contribution cos(theta)/r^2. Moreover, the third order effect is due to the
electric quadrupole potential, [3*cos^2(theta)-1]/2*r^3. We use the tridiagonal
representation approach to give a reasonably accurate account for the combined
effects of all these contributions to the binding energy of the electron but
with an effective quadrupole interaction. As an application, we obtain the
bound states of a valence electron in an atom with both electric dipole and
quadrupole moments.
Related papers
- Strongly correlated multi-electron bunches from interaction with quantum light [0.09423257767158631]
We show that free electrons interacting simultaneously with a light field can become highly correlated via mechanisms beyond Coulomb interactions.
Our findings pave the way to the creation and control of highly correlated free electrons for applications including quantum information and ultra-fast imaging.
arXiv Detail & Related papers (2024-04-23T12:01:29Z) - Optically induced delocalization of electrons bound by attractive
potentials [0.0]
A circularly polarized off-resonant electromagnetic field can destroy the electron states bound by three-dimensional attractive potentials.
As a consequence, the optically induced delocalization of bound electrons appears.
arXiv Detail & Related papers (2023-08-14T14:51:42Z) - Foldy-Wouthuysen transformation and multiwave states of a graphene
electron in external fields and free (2+1)-space [91.3755431537592]
Graphene electrons in a static electric field can exist in the multiwave Hermite-Gauss states defining non-spreading coherent beams.
It is proven that the Hermite-Gauss beams exist even in the free space.
arXiv Detail & Related papers (2023-05-07T17:03:00Z) - A functional approach to the Van der Waals interaction [0.0]
We use a functional integral approach to evaluate the quantum interaction energy between two neutral atoms.
We show that the resulting expression for the energy becomes the Van der Waals interaction energy at the first non-trivial order.
We also explore the opposite, strong-coupling limit, which yields a result for the interaction energy as well as a threshold for the existence of a vacuum decay probability.
arXiv Detail & Related papers (2023-02-01T19:14:28Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Three-electron correlations in strong laser field ionization: Spin
induced effects [0.0]
We study model atoms with three active electrons interacting with strong pulsed radiation, using an ab-initio time-dependent Schr"odinger equation on a grid.
We show that significant differences are obtained between model Neon and Nitrogen atoms.
These differences are traced back to the different symmetries of the electronic wavefunctions, and directly related to the different initial state spin components.
arXiv Detail & Related papers (2021-04-29T15:57:00Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z) - Strong-field triple ionization of atoms with $p^3$ valence shell [0.0]
We study the interaction of strong pulsed femtosecond laser field with atoms having three equivalent electrons in the outer shell.
The direct triple ionization channel is found to produce a larger yield than the channel connected with single and then direct double ionization.
arXiv Detail & Related papers (2021-02-12T12:00:05Z) - Trapping, Shaping and Isolating of Ion Coulomb Crystals via
State-selective Optical Potentials [55.41644538483948]
In conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent on their charge-to-mass ratio $Q/m$.
Here we experimentally study optical dipole potentials for $138mathrmBa+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm.
arXiv Detail & Related papers (2020-10-26T14:36:48Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.