Quantum Bell nonlocality cannot be shared under a special kind of
bilateral measurements for high-dimensional quantum states
- URL: http://arxiv.org/abs/2210.14447v1
- Date: Wed, 26 Oct 2022 03:39:43 GMT
- Title: Quantum Bell nonlocality cannot be shared under a special kind of
bilateral measurements for high-dimensional quantum states
- Authors: Tinggui Zhang, Qiming Luo and Xiaofen Huang
- Abstract summary: We consider the shareability of quantum Bell nonlocality under bilateral measurements.
Under a specific class of projection operators, we find that quantum Bell nonlocality cannot be shared for a limited number of times.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Bell nonlocality is an important quantum phenomenon. Recently, the
shareability of Bell nonlocality under unilateral measurements has been widely
studied. In this study, we consider the shareability of quantum Bell
nonlocality under bilateral measurements. Under a specific class of projection
operators, we find that quantum Bell nonlocality cannot be shared for a limited
number of times, as in the case of unilateral measurements. Our proof is
analytical and our measurement strategies can be generalized to higher
dimension cases.
Related papers
- A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Squeezing the quantum noise of a gravitational-wave detector below the standard quantum limit [21.757974626255706]
We show how the LIGO A+ upgrade reduced the detectors' quantum noise below the Standard Quantum Limit by up to 3 dB while achieving a broadband sensitivity improvement.
The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot both be precisely measured.
arXiv Detail & Related papers (2024-04-22T20:32:18Z) - All incompatible measurements on qubits lead to multiparticle Bell nonlocality [0.6827423171182154]
We prove that any set of incompatible measurements on qubits leads to a violation of a suitable Bell inequality in a multiparticle scenario.
Our results imply that measurement incompatibility for qubits can always be certified in a device-independent manner.
arXiv Detail & Related papers (2024-03-14T14:09:24Z) - Sharing Bell nonlocality of bipartite high-dimensional pure states using
only projective measurements [15.304146645863584]
Bell nonlocality is the key quantum resource in some device-independent quantum information processing.
Unsharp measurements are widely used in sharing the nonlocality of an entangled state among several sequential observers.
We show that projective measurements are sufficient for sharing the Bell nonlocality of arbitrary high-dimensional pure bipartite states.
arXiv Detail & Related papers (2024-02-20T00:38:54Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - Detection of Beyond-Quantum Non-locality based on Standard Local Quantum
Observables [46.03321798937856]
We show that device independent detection cannot distinguish beyond-quantum non-local states from standard quantum states.
This paper gives a device dependent detection based on local observables to distinguish any beyond-quantum non-local state from all standard quantum states.
arXiv Detail & Related papers (2023-01-10T20:19:34Z) - Sharing Quantum Nonlocality in Star Network Scenarios [0.0]
The nonlocality of quantum network states is more complex than the Bell nonlocality.
For the star network scenarios, we present for the first time comprehensive results on the nonlocality sharing properties of quantum network states.
arXiv Detail & Related papers (2022-10-12T07:50:19Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Bilocal Bell inequalities violated by the quantum Elegant Joint
Measurement [0.0]
We investigate the simplest network, known as the bilocality scenario.
We report noise-tolerant quantum correlations that elude bilocal variable models.
We pave the way for an experimental realisation by presenting a simple two-qubit quantum circuit.
arXiv Detail & Related papers (2020-06-30T11:32:26Z) - Joint Measurability, Einstein-Podolsky-Rosen Steering, and Bell
Nonlocality [0.0]
We show that any set of measurements not jointly measurable can be used for demonstrating quantum nonlocality.
We also discuss the connection between Bell nonlocality and joint measurability, and give evidence that both notions are inequivalent.
arXiv Detail & Related papers (2014-06-26T18:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.