All incompatible measurements on qubits lead to multiparticle Bell nonlocality
- URL: http://arxiv.org/abs/2403.10564v3
- Date: Wed, 27 Mar 2024 20:12:15 GMT
- Title: All incompatible measurements on qubits lead to multiparticle Bell nonlocality
- Authors: Martin Plávala, Otfried Gühne, Marco Túlio Quintino,
- Abstract summary: We prove that any set of incompatible measurements on qubits leads to a violation of a suitable Bell inequality in a multiparticle scenario.
Our results imply that measurement incompatibility for qubits can always be certified in a device-independent manner.
- Score: 0.6827423171182154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bell nonlocality is a fundamental phenomenon of quantum physics as well as an essential resource for various tasks in quantum information processing. It is known that for the observation of nonlocality the measurements on a quantum system have to be incompatible, but the question which incompatible measurements are useful, remained open. Here we prove that any set of incompatible measurements on qubits leads to a violation of a suitable Bell inequality in a multiparticle scenario, where all parties perform the same set of measurements. Since there exists incompatible measurements on qubits which do not lead to Bell nonlocality for two particles, our results demonstrate a fundamental difference between two-particle and multi-particle nonlocality, pointing at the superactivation of measurement incompatibility as a resource. In addition, our results imply that measurement incompatibility for qubits can always be certified in a device-independent manner.
Related papers
- Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - All pure bipartite entangled states can be semi-self-tested with only
one measurement setting on each party [1.6629141734354616]
We prove that an arbitrary $dtimes d$ bipartite pure state can be certified completely (up to local unitary transformations) by a certain correlation generated by a single measurement setting on each party.
Notably, our protocols do not involve any quantum nonlocality.
arXiv Detail & Related papers (2023-06-13T13:12:07Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - Distributed quantum incompatibility [0.0]
We show that the incompatibility which is gained via additional measurements is upper and lower bounded by certain functions of the incompatibility of subsets of the available measurements.
We discuss the consequences of our results for the nonlocality that can be gained by enlarging the number of measurements in a Bell experiment.
arXiv Detail & Related papers (2023-01-20T16:47:18Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Quantifying incompatibility of quantum measurements through
non-commutativity [0.0]
Incompatible measurements are an important distinction between quantum mechanics and classical theories.
We explore a family of incompatibility measures based on non-commutativity.
We show that they satisfy some natural information-processing requirements.
We also consider the behavior of our measures under different types of compositions.
arXiv Detail & Related papers (2021-10-20T16:37:10Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Incompatibility probability of random quantum measurements [3.7298088649201353]
Incompatibility of quantum measurements is of fundamental importance in quantum mechanics.
We study the necessary and sufficient conditions of quantum compatibility for a given collection of $n$ measurements in $d$-dimensional space.
arXiv Detail & Related papers (2019-12-27T19:44:26Z) - Joint Measurability, Einstein-Podolsky-Rosen Steering, and Bell
Nonlocality [0.0]
We show that any set of measurements not jointly measurable can be used for demonstrating quantum nonlocality.
We also discuss the connection between Bell nonlocality and joint measurability, and give evidence that both notions are inequivalent.
arXiv Detail & Related papers (2014-06-26T18:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.