論文の概要: Quantum deep recurrent reinforcement learning
- arxiv url: http://arxiv.org/abs/2210.14876v1
- Date: Wed, 26 Oct 2022 17:29:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 12:42:55.352054
- Title: Quantum deep recurrent reinforcement learning
- Title(参考訳): 量子深部繰り返し強化学習
- Authors: Samuel Yen-Chi Chen
- Abstract要約: 強化学習(Reinforcement Learning、RL)は、複雑なシーケンシャルな意思決定問題を解決するために使用できる機械学習(ML)パラダイムの1つである。
QRLエージェントのコアとなるために、量子長短期メモリ(QLSTM)を構築し、Q$-learningでモデル全体をトレーニングします。
QLSTM-DRQNは従来のDRQNよりも安定で平均スコアの高いCart-Poleのような標準ベンチマークを解くことができる。
- 参考スコア(独自算出の注目度): 0.8702432681310399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in quantum computing (QC) and machine learning (ML) have
drawn significant attention to the development of quantum machine learning
(QML). Reinforcement learning (RL) is one of the ML paradigms which can be used
to solve complex sequential decision making problems. Classical RL has been
shown to be capable to solve various challenging tasks. However, RL algorithms
in the quantum world are still in their infancy. One of the challenges yet to
solve is how to train quantum RL in the partially observable environments. In
this paper, we approach this challenge through building QRL agents with quantum
recurrent neural networks (QRNN). Specifically, we choose the quantum long
short-term memory (QLSTM) to be the core of the QRL agent and train the whole
model with deep $Q$-learning. We demonstrate the results via numerical
simulations that the QLSTM-DRQN can solve standard benchmark such as Cart-Pole
with more stable and higher average scores than classical DRQN with similar
architecture and number of model parameters.
- Abstract(参考訳): 量子コンピューティング(QC)と機械学習(ML)の最近の進歩は、量子機械学習(QML)の発展に大きな注目を集めている。
強化学習(Reinforcement Learning, RL)は、複雑なシーケンシャルな意思決定問題を解決するために使用できるMLパラダイムの1つである。
古典的なRLは様々な課題を解くことができる。
しかし、量子世界のRLアルゴリズムはまだ初期段階にある。
まだ解決されていない課題の1つは、部分的に観測可能な環境で量子RLをトレーニングする方法である。
本稿では,量子リカレントニューラルネットワーク(qrnn)を用いたqrlエージェントの構築により,この問題にアプローチする。
具体的には、quantum long short-term memory (qlstm) をqrlエージェントのコアとして選択し、深い$q$-learningでモデル全体をトレーニングします。
我々は,QLSTM-DRQNが従来のDRQNよりも安定で平均スコアの高いCart-Poleのような標準ベンチマークを,類似したアーキテクチャとモデルパラメータの数で解くことができることを示す。
関連論文リスト
- Challenges for Reinforcement Learning in Quantum Circuit Design [8.894627352356302]
ハイブリッド量子機械学習(QML)は、機械学習(ML)を改善するためのQCの応用と、QCアーキテクチャを改善するためのMLの両方を含む。
我々はマルコフ決定過程として定式化された具体的なフレームワークであるqcd-gymを提案し、連続パラメータ化された量子ゲートの普遍的なセットを制御することができる学習ポリシーを実現する。
論文 参考訳(メタデータ) (2023-12-18T16:41:30Z) - Efficient quantum recurrent reinforcement learning via quantum reservoir
computing [3.6881738506505988]
量子強化学習(QRL)は、シーケンシャルな意思決定タスクを解決するためのフレームワークとして登場した。
本研究は、QRNNベースの量子長短期メモリ(QLSTM)を用いたQRLエージェントの構築により、この課題に対処する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-13T22:18:38Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Asynchronous training of quantum reinforcement learning [0.8702432681310399]
変分量子回路(VQC)による量子RLエージェント構築の先導的手法
本稿では,QRLエージェントを非同期トレーニングすることで,この問題に対処する。
検討したタスクにおいて,QRLエージェントの非同期トレーニングが性能に匹敵するか,優れているかを数値シミュレーションで示す。
論文 参考訳(メタデータ) (2023-01-12T15:54:44Z) - Reservoir Computing via Quantum Recurrent Neural Networks [0.5999777817331317]
既存のVQCまたはQNNベースの手法は、量子回路パラメータの勾配に基づく最適化を行うために、かなりの計算資源を必要とする。
本研究では、量子リカレントニューラルネットワーク(QRNN-RC)に貯水池計算(RC)フレームワークを適用し、逐次モデリングにアプローチする。
数値シミュレーションにより、QRNN-RCは、複数の関数近似および時系列タスクに対して、完全に訓練されたQRNNモデルに匹敵する結果が得られることが示された。
論文 参考訳(メタデータ) (2022-11-04T17:30:46Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
本稿では、離散的かつ連続的な状態空間に対するRLタスクを解くために使用できるパラメタライズド量子回路(PQC)のトレーニング手法を提案する。
量子Q学習エージェントのどのアーキテクチャ選択が、特定の種類の環境をうまく解決するのに最も重要であるかを検討する。
論文 参考訳(メタデータ) (2021-03-28T08:57:22Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。