論文の概要: Efficient quantum recurrent reinforcement learning via quantum reservoir
computing
- arxiv url: http://arxiv.org/abs/2309.07339v1
- Date: Wed, 13 Sep 2023 22:18:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 16:37:52.184683
- Title: Efficient quantum recurrent reinforcement learning via quantum reservoir
computing
- Title(参考訳): 量子貯留層計算による高効率量子リカレント強化学習
- Authors: Samuel Yen-Chi Chen
- Abstract要約: 量子強化学習(QRL)は、シーケンシャルな意思決定タスクを解決するためのフレームワークとして登場した。
本研究は、QRNNベースの量子長短期メモリ(QLSTM)を用いたQRLエージェントの構築により、この課題に対処する新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 3.6881738506505988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum reinforcement learning (QRL) has emerged as a framework to solve
sequential decision-making tasks, showcasing empirical quantum advantages. A
notable development is through quantum recurrent neural networks (QRNNs) for
memory-intensive tasks such as partially observable environments. However, QRL
models incorporating QRNN encounter challenges such as inefficient training of
QRL with QRNN, given that the computation of gradients in QRNN is both
computationally expensive and time-consuming. This work presents a novel
approach to address this challenge by constructing QRL agents utilizing
QRNN-based reservoirs, specifically employing quantum long short-term memory
(QLSTM). QLSTM parameters are randomly initialized and fixed without training.
The model is trained using the asynchronous advantage actor-aritic (A3C)
algorithm. Through numerical simulations, we validate the efficacy of our
QLSTM-Reservoir RL framework. Its performance is assessed on standard
benchmarks, demonstrating comparable results to a fully trained QLSTM RL model
with identical architecture and training settings.
- Abstract(参考訳): 量子強化学習(QRL)は、経験的量子優位性を示す、シーケンシャルな意思決定タスクを解決するためのフレームワークとして登場した。
注目すべき進展は、部分的に観測可能な環境のようなメモリ集約的なタスクのための量子リカレントニューラルネットワーク(QRNN)を通じてである。
しかし、QRNNの勾配の計算は計算コストも時間もかかるため、QRNNを組み込んだQRLモデルはQRLとQRNNの非効率なトレーニングのような課題に直面している。
本研究は、QRNNベースの貯水池を用いたQRLエージェントの構築、特に量子長短期メモリ(QLSTM)を用いた新しいアプローチを提案する。
QLSTMパラメータはランダムに初期化され、トレーニングなしで固定される。
このモデルは、asynchronous advantage actor-aritic (a3c)アルゴリズムを使ってトレーニングされる。
数値シミュレーションによりQLSTM-Reservoir RLフレームワークの有効性を検証した。
その性能は標準ベンチマークで評価され、完全にトレーニングされたQLSTM RLモデルに匹敵する結果を示している。
関連論文リスト
- Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning [3.6881738506505988]
トレーニング可能な回路パラメータと構造重み付けを可能にするために、微分可能な量子アーキテクチャ探索(DiffQAS)を提案する。
提案したDiffQAS-QRL手法は,手作業による回路アーキテクチャに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2024-07-25T17:11:00Z) - Learning to Program Variational Quantum Circuits with Fast Weights [3.6881738506505988]
本稿では,時間的あるいはシーケンシャルな学習課題に対する解決法として,QFWP(Quantum Fast Weight Programmers)を提案する。
提案したQFWPモデルは、量子リカレントニューラルネットワークの使用を必要とせずに、時間的依存関係の学習を実現する。
本研究では, 時系列予測とRLタスクにおいて, 提案したQFWPモデルの有効性を示す数値シミュレーションを行った。
論文 参考訳(メタデータ) (2024-02-27T18:53:18Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
量子フェデレーション学習(QFL)は、量子機械学習(QML)モデルを使用して、複数のクライアント間の協調学習を容易にする。
関数の近似に時間的データを利用するQFLフレームワークの開発に前向きな作業は行われていない。
量子長短期メモリ(QLSTM)モデルと時間データを統合する新しいQFLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-21T21:40:47Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Asynchronous training of quantum reinforcement learning [0.8702432681310399]
変分量子回路(VQC)による量子RLエージェント構築の先導的手法
本稿では,QRLエージェントを非同期トレーニングすることで,この問題に対処する。
検討したタスクにおいて,QRLエージェントの非同期トレーニングが性能に匹敵するか,優れているかを数値シミュレーションで示す。
論文 参考訳(メタデータ) (2023-01-12T15:54:44Z) - Reservoir Computing via Quantum Recurrent Neural Networks [0.5999777817331317]
既存のVQCまたはQNNベースの手法は、量子回路パラメータの勾配に基づく最適化を行うために、かなりの計算資源を必要とする。
本研究では、量子リカレントニューラルネットワーク(QRNN-RC)に貯水池計算(RC)フレームワークを適用し、逐次モデリングにアプローチする。
数値シミュレーションにより、QRNN-RCは、複数の関数近似および時系列タスクに対して、完全に訓練されたQRNNモデルに匹敵する結果が得られることが示された。
論文 参考訳(メタデータ) (2022-11-04T17:30:46Z) - Quantum deep recurrent reinforcement learning [0.8702432681310399]
強化学習(Reinforcement Learning、RL)は、複雑なシーケンシャルな意思決定問題を解決するために使用できる機械学習(ML)パラダイムの1つである。
QRLエージェントのコアとなるために、量子長短期メモリ(QLSTM)を構築し、Q$-learningでモデル全体をトレーニングします。
QLSTM-DRQNは従来のDRQNよりも安定で平均スコアの高いCart-Poleのような標準ベンチマークを解くことができる。
論文 参考訳(メタデータ) (2022-10-26T17:29:19Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。