論文の概要: Vanishing Component Analysis with Contrastive Normalization
- arxiv url: http://arxiv.org/abs/2210.16171v1
- Date: Thu, 27 Oct 2022 07:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 17:25:43.832881
- Title: Vanishing Component Analysis with Contrastive Normalization
- Title(参考訳): コントラスト正規化による消滅成分分析
- Authors: Ryosuke Masuya, Yuichi Ike and Hiroshi Kera
- Abstract要約: 消滅成分分析は、サンプルの消滅イデアルの近似生成器を計算する。
近年の研究では、近似発電機の正規化が重要な役割を担っていることが示されている。
本稿では, VCA の逆正規化手法を提案し, 生成元を対象試料に固定し, 変換サンプルに正規化する。
- 参考スコア(独自算出の注目度): 7.133136338850781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vanishing component analysis (VCA) computes approximate generators of
vanishing ideals of samples, which are further used for extracting nonlinear
features of the samples. Recent studies have shown that normalization of
approximate generators plays an important role and different normalization
leads to generators of different properties. In this paper, inspired by recent
self-supervised frameworks, we propose a contrastive normalization method for
VCA, where we impose the generators to vanish on the target samples and to be
normalized on the transformed samples. We theoretically show that a contrastive
normalization enhances the discriminative power of VCA, and provide the
algebraic interpretation of VCA under our normalization. Numerical experiments
demonstrate the effectiveness of our method. This is the first study to tailor
the normalization of approximate generators of vanishing ideals to obtain
discriminative features.
- Abstract(参考訳): 消滅成分分析(VCA)は、サンプルの消失理想の近似生成器を計算し、サンプルの非線形特徴の抽出にさらに使用される。
近年の研究では、近似ジェネレータの正規化が重要な役割を担い、異なる正規化が異なる性質のジェネレータにつながることが示されている。
本稿では,近年の自己監督型フレームワークに着想を得て,VCAの逆正規化手法を提案する。
理論的には、対照的な正規化はVCAの識別力を高め、VCAの正規化の下での代数的解釈を提供する。
数値実験により本手法の有効性が示された。
これは、イデアルの近似生成子の正規化を調整し、識別的特徴を得るための最初の研究である。
関連論文リスト
- Disentanglement with Factor Quantized Variational Autoencoders [11.086500036180222]
本稿では,生成因子に関する基礎的真理情報をモデルに提供しない離散変分オートエンコーダ(VAE)モデルを提案する。
本研究では, 離散表現を学習する上で, 連続表現を学習することの利点を実証する。
FactorQVAEと呼ばれる手法は,最適化に基づく不整合アプローチと離散表現学習を組み合わせた最初の手法である。
論文 参考訳(メタデータ) (2024-09-23T09:33:53Z) - Weak Generative Sampler to Efficiently Sample Invariant Distribution of Stochastic Differential Equation [8.67581853745823]
現在のディープラーニングに基づく手法は、定常フォッカー-プランク方程式を解き、ディープニューラルネットワークの形で不変確率密度関数を決定する。
本稿では, 弱い生成サンプル(WGS)を用いて, 独立かつ同一に分布したサンプルを直接生成するフレームワークを提案する。
提案した損失関数はFokker-Planck方程式の弱い形式に基づいており、正規化フローを統合して不変分布を特徴づける。
論文 参考訳(メタデータ) (2024-05-29T16:41:42Z) - Approximate Message Passing for the Matrix Tensor Product Model [8.206394018475708]
本稿では,行列テンソル積モデルに対する近似メッセージパッシング(AMP)アルゴリズムの提案と解析を行う。
非可分関数に対する収束定理に基づいて、非可分関数に対する状態発展を証明する。
我々は、この状態進化結果を利用して、関心の信号の回復に必要な十分な条件を提供する。
論文 参考訳(メタデータ) (2023-06-27T16:03:56Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
本研究では拡散生成モデルに用いる決定論的サンプリング器の非漸近解析のためのフレームワークを開発する。
確率フローODEに沿った1ステップは,1) 条件付き対数線上を無限に先行して上昇する回復ステップ,2) 雑音を現在の勾配に向けて前向きに進行する劣化ステップの2段階で表すことができる。
論文 参考訳(メタデータ) (2023-03-06T18:59:19Z) - Energy-Based Test Sample Adaptation for Domain Generalization [81.04943285281072]
そこで本研究では,ドメインの試験時間におけるエネルギーに基づくサンプル適応を提案する。
対象試料をソース分布に適応させるため,エネルギー最小化により反復的に試料を更新する。
画像とマイクロブログスレッドの分類のための6つのベンチマーク実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-22T08:55:09Z) - Using Intermediate Forward Iterates for Intermediate Generator
Optimization [14.987013151525368]
中間ジェネレータ最適化は、生成タスクのための任意の標準オートエンコーダパイプラインに組み込むことができる。
IGOの2つの密集予測タスク(viz.)、画像外挿、点雲デノイング(denoising)に対する応用を示す。
論文 参考訳(メタデータ) (2023-02-05T08:46:15Z) - Deterministic Gibbs Sampling via Ordinary Differential Equations [77.42706423573573]
本稿では,自律的ODEとツールを用いた決定論的測度保存ダイナミクスの一般構築について述べる。
我々は、ハイブリッドモンテカルロや他の決定論的サンプルが、我々の理論の特別な場合としてどのように従うかを示す。
論文 参考訳(メタデータ) (2021-06-18T15:36:09Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
深層学習の成功に基づいて、GAN(Generative Adversarial Networks)は、観測されたサンプルから確率分布を学習するための現代的なアプローチを提供する。
GANはしばしば、ジェネレータが入力分布の既存のすべてのモードをキャプチャできないモード崩壊問題に悩まされる。
情報理論のアプローチを採り、生成したサンプルのエントロピーの変動的下限を最大化し、それらの多様性を増大させる。
論文 参考訳(メタデータ) (2020-09-24T19:34:37Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。