論文の概要: Weak Generative Sampler to Efficiently Sample Invariant Distribution of Stochastic Differential Equation
- arxiv url: http://arxiv.org/abs/2405.19256v1
- Date: Wed, 29 May 2024 16:41:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 16:12:12.377954
- Title: Weak Generative Sampler to Efficiently Sample Invariant Distribution of Stochastic Differential Equation
- Title(参考訳): 確率微分方程式の効率的サンプル不変分布に対する弱生成サンプリング
- Authors: Zhiqiang Cai, Yu Cao, Yuanfei Huang, Xiang Zhou,
- Abstract要約: 現在のディープラーニングに基づく手法は、定常フォッカー-プランク方程式を解き、ディープニューラルネットワークの形で不変確率密度関数を決定する。
本稿では, 弱い生成サンプル(WGS)を用いて, 独立かつ同一に分布したサンプルを直接生成するフレームワークを提案する。
提案した損失関数はFokker-Planck方程式の弱い形式に基づいており、正規化フローを統合して不変分布を特徴づける。
- 参考スコア(独自算出の注目度): 8.67581853745823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sampling invariant distributions from an Ito diffusion process presents a significant challenge in stochastic simulation. Traditional numerical solvers for stochastic differential equations require both a fine step size and a lengthy simulation period, resulting in both biased and correlated samples. Current deep learning-based method solves the stationary Fokker--Planck equation to determine the invariant probability density function in form of deep neural networks, but they generally do not directly address the problem of sampling from the computed density function. In this work, we introduce a framework that employs a weak generative sampler (WGS) to directly generate independent and identically distributed (iid) samples induced by a transformation map derived from the stationary Fokker--Planck equation. Our proposed loss function is based on the weak form of the Fokker--Planck equation, integrating normalizing flows to characterize the invariant distribution and facilitate sample generation from the base distribution. Our randomized test function circumvents the need for mini-max optimization in the traditional weak formulation. Distinct from conventional generative models, our method neither necessitates the computationally intensive calculation of the Jacobian determinant nor the invertibility of the transformation map. A crucial component of our framework is the adaptively chosen family of test functions in the form of Gaussian kernel functions with centres selected from the generated data samples. Experimental results on several benchmark examples demonstrate the effectiveness of our method, which offers both low computational costs and excellent capability in exploring multiple metastable states.
- Abstract(参考訳): 伊藤拡散過程から不変分布をサンプリングすることは確率的シミュレーションにおいて重要な課題となる。
確率微分方程式の伝統的な数値解法は、微細なステップサイズと長いシミュレーション期間の両方を必要とし、バイアスと相関したサンプルの両方をもたらす。
現在のディープラーニングに基づく手法では、定常フォッカー・プランク方程式を解き、深層ニューラルネットワークの形で不変確率密度関数を決定するが、一般に計算された密度関数からのサンプリングの問題を直接解決しない。本研究では、弱い生成型サンプリング器(WGS)を用いて、定常フォッカー・プランク方程式から導出される変換マップによって直接的に誘導される独立分布(IIid)サンプルを生成するフレームワークを導入する。
提案した損失関数はFokker-Planck方程式の弱い形式に基づいており、正規化フローを統合し、不変分布を特徴づけ、基底分布からのサンプル生成を容易にする。
我々のランダム化テスト関数は、従来の弱い定式化においてミニマックス最適化の必要性を回避する。
従来の生成モデルとは違って,ヤコビ行列式の計算集約計算や変換写像の可逆性は不要である。
我々のフレームワークの重要な構成要素は、ガウス核関数の形で適応的に選択されたテスト関数群であり、生成したデータサンプルから中心が選択される。
提案手法の有効性は, 計算コストが低く, 準安定状態の探索にも優れることを示す。
関連論文リスト
- Stochastic Sampling from Deterministic Flow Models [8.849981177332594]
そこで本論文では,フローモデルを同じ境界分布を持つ微分方程式の族(SDE)に変換する手法を提案する。
我々は,おもちゃのガウスセットアップと大規模イメージネット生成タスクにおいて,提案手法の利点を実証的に実証した。
論文 参考訳(メタデータ) (2024-10-03T05:18:28Z) - HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models [1.949927790632678]
本稿では,ブラウン運動文脈におけるコールホップ変換(Cole-Hopf transform)と呼ばれるログ変換に基づく。
本稿では,HJ-sampler という新しいアルゴリズムを開発し,与えられた終端観測による微分方程式の逆問題に対する推論を行う。
論文 参考訳(メタデータ) (2024-09-15T05:30:54Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - Probability flow solution of the Fokker-Planck equation [10.484851004093919]
確率の流れを記述した常微分方程式の統合に基づく代替スキームを導入する。
力学とは異なり、この方程式は決定論的に初期密度からのサンプルを後から溶液のサンプルにプッシュする。
我々のアプローチは、生成モデルのためのスコアベース拡散の最近の進歩に基づいている。
論文 参考訳(メタデータ) (2022-06-09T17:37:09Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Learning Equivariant Energy Based Models with Equivariant Stein
Variational Gradient Descent [80.73580820014242]
本稿では,確率モデルに対称性を組み込むことにより,確率密度の効率的なサンプリングと学習の問題に焦点をあてる。
まず、等変シュタイン変分勾配Descentアルゴリズムを導入する。これは、対称性を持つ密度からサンプリングするスタインの同一性に基づく同変サンプリング法である。
我々はエネルギーベースモデルのトレーニングを改善し、スケールアップする新しい方法を提案する。
論文 参考訳(メタデータ) (2021-06-15T01:35:17Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。