論文の概要: Deterministic Gibbs Sampling via Ordinary Differential Equations
- arxiv url: http://arxiv.org/abs/2106.10188v1
- Date: Fri, 18 Jun 2021 15:36:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-21 13:57:29.790733
- Title: Deterministic Gibbs Sampling via Ordinary Differential Equations
- Title(参考訳): 正規微分方程式による決定論的ギブズサンプリング
- Authors: Kirill Neklyudov, Roberto Bondesan, Max Welling
- Abstract要約: 本稿では,自律的ODEとツールを用いた決定論的測度保存ダイナミクスの一般構築について述べる。
我々は、ハイブリッドモンテカルロや他の決定論的サンプルが、我々の理論の特別な場合としてどのように従うかを示す。
- 参考スコア(独自算出の注目度): 77.42706423573573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deterministic dynamics is an essential part of many MCMC algorithms, e.g.
Hybrid Monte Carlo or samplers utilizing normalizing flows. This paper presents
a general construction of deterministic measure-preserving dynamics using
autonomous ODEs and tools from differential geometry. We show how Hybrid Monte
Carlo and other deterministic samplers follow as special cases of our theory.
We then demonstrate the utility of our approach by constructing a continuous
non-sequential version of Gibbs sampling in terms of an ODE flow and extending
it to discrete state spaces. We find that our deterministic samplers are more
sample efficient than stochastic counterparts, even if the latter generate
independent samples.
- Abstract(参考訳): 決定論的ダイナミクスは多くのMCMCアルゴリズムの重要な部分である。
正規化流を利用したハイブリッドモンテカルロまたはサンプラー
本稿では,自律的ODEとツールを用いた決定論的測度保存ダイナミクスの一般構築について述べる。
我々は、ハイブリッドモンテカルロや他の決定論的サンプルが、我々の理論の特別な場合としてどのように従うかを示す。
次に, ODE フローの観点から連続的な非逐次バージョンの Gibbs をサンプリングし, 離散状態空間に拡張することで, 提案手法の有用性を実証する。
決定論的サンプルは, 独立標本を生成しても, 確率的サンプルよりも効率がよいことがわかった。
関連論文リスト
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Stochastic Sampling from Deterministic Flow Models [8.849981177332594]
そこで本論文では,フローモデルを同じ境界分布を持つ微分方程式の族(SDE)に変換する手法を提案する。
我々は,おもちゃのガウスセットアップと大規模イメージネット生成タスクにおいて,提案手法の利点を実証的に実証した。
論文 参考訳(メタデータ) (2024-10-03T05:18:28Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems [26.744964200606784]
マルコフ連鎖モンテカルロ法による新しい推論アルゴリズムを提案する。
提示されたギブスサンプルは、正確な連続時間後処理から試料を効率的に得ることができる。
論文 参考訳(メタデータ) (2022-05-18T09:03:00Z) - Continual Repeated Annealed Flow Transport Monte Carlo [93.98285297760671]
我々はCRAFT(Continuous Repeated Annealed Flow Transport Monte Carlo)を提案する。
シーケンシャルなモンテカルロサンプリングと正規化フローを用いた変分推論を組み合わせる。
CRAFTは格子場の実例で驚くほど正確な結果が得られることを示す。
論文 参考訳(メタデータ) (2022-01-31T10:58:31Z) - Sampling from high-dimensional, multimodal distributions using automatically tuned, tempered Hamiltonian Monte Carlo [0.0]
ハミルトニアン・モンテカルロ (HMC) は確率密度が比例的に知られている高次元対象分布のサンプリングに広く用いられている。
伝統的テンパリング法は、特に高次元においてチューニングが困難である。
本研究では,高次元の強いマルチモーダル分布からの効率的なサンプリングを可能にするため,テンパリング戦略をハミルトンモンテカルロと組み合わせる手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:48:36Z) - Direct sampling of projected entangled-pair states [0.0]
投射的絡み合ったペア状態(PEPS)を用いたモンテカルロ変分法(英語版)の研究は、長年の疑問に対する回答を提示できることを最近示した。
本稿では,PEPSから独立したサンプルを生成するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-15T15:09:20Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。