論文の概要: Improved Gauge-Unfixing Formalism through a Prototypical Second-Class
System
- arxiv url: http://arxiv.org/abs/2210.16927v1
- Date: Sun, 30 Oct 2022 19:06:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-21 00:42:25.839867
- Title: Improved Gauge-Unfixing Formalism through a Prototypical Second-Class
System
- Title(参考訳): 原型的第二級システムによるゲージアンフィッティング形式の改善
- Authors: Jorge Ananias Neto, Widervan de Deus Morais and Ronaldo Thibes
- Abstract要約: 任意のゲージ不変関数が位相空間の特定の変形によって得られることを示す。
非線形モデルに適用した手法を解説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We contextualize the improved gauge-unfixing (GU) formalism within a rather
general prototypical second-class system, obtaining a corresponding first-class
equivalent description enjoying gauge invariance which can be applied to
several situations. The prototypical system is chosen to represent a
considerable class of relevant models in field theory. By considering the
improved version of the GU formalism, we show that any gauge-invariant function
can be obtained in terms of a specific deformation in phase space, benefiting
thus from the fact that no auxiliary variables are needed in the process. In
this way, the resulting converted first-class system is constructed out of the
same original canonical variables, preserving the number of degrees of freedom.
We illustrate the technique with an application to the nonlinear sigma model.
- Abstract(参考訳): 改良されたゲージアンフィッティング(gu)形式を、比較的一般的な原型的な第二級システム内で文脈化し、いくつかの状況に適用可能なゲージ不変性を楽しむための対応する第一級等価記述を得る。
原型体系は、場論における関連するモデルの相当なクラスを表すために選択される。
gu形式の改良版を考えることで、任意のゲージ不変関数は位相空間内の特定の変形の観点から得られることを示し、従って、その過程において補助変数が不要であるという事実から利益を得る。
このようにして、変換された第一級システムは、同じ元の標準変数から構成され、自由度数を保存する。
本手法を非線形シグマモデルに適用して説明する。
関連論文リスト
- BINDy -- Bayesian identification of nonlinear dynamics with reversible-jump Markov-chain Monte-Carlo [0.0]
モデルパーシモニーは、データ駆動型モデリングにおける重要な認識バイアスであり、解釈可能性を助け、過度な適合を防ぐのに役立つ。
非線形力学(SINDy)法のスパース同定は、データから直接複素力学のスパース表現を学習することができる。
SINDyの代替として,辞書学習システム識別のベイズ的新しい治療法が提案されている。
論文 参考訳(メタデータ) (2024-08-15T10:03:30Z) - A Canonicalization Perspective on Invariant and Equivariant Learning [54.44572887716977]
フレームの設計について,本質的で完全な視点を提供する正準化の視点を導入する。
フレームと標準形式の間には固有の関係があることが示される。
既存の手法よりも厳密な固有ベクトルのための新しいフレームを設計する。
論文 参考訳(メタデータ) (2024-05-28T17:22:15Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Predicting Ordinary Differential Equations with Transformers [65.07437364102931]
単一溶液軌道の不規則サンプリングおよび雑音観測から,スカラー常微分方程式(ODE)を記号形式で復元するトランスフォーマーに基づくシーケンス・ツー・シーケンス・モデルを開発した。
提案手法は, 1回に一度, ODE の大規模な事前訓練を行った後, モデルのいくつかの前方通過において, 新たな観測解の法則を推測することができる。
論文 参考訳(メタデータ) (2023-07-24T08:46:12Z) - Constraining Gaussian Processes to Systems of Linear Ordinary
Differential Equations [5.33024001730262]
LODE-GP は定数係数を持つ線形同次ODEの系に従う。
複数の実験においてLODE-GPの有効性を示す。
論文 参考訳(メタデータ) (2022-08-26T09:16:53Z) - Quasi Black-Box Variational Inference with Natural Gradients for
Bayesian Learning [84.90242084523565]
複素モデルにおけるベイズ学習に適した最適化アルゴリズムを開発した。
我々のアプローチは、モデル固有導出に制限のある効率的なトレーニングのための一般的なブラックボックスフレームワーク内の自然な勾配更新に依存している。
論文 参考訳(メタデータ) (2022-05-23T18:54:27Z) - Bayesian Discrete Conditional Transformation Models [0.0]
本稿では,応答の条件変換に基づく離散順序数とカウントデータのための新しいベイズモデルフレームワークを提案する。
数え上げ応答に対して、結果の変換モデルはベイズ完全パラメトリックであるが分布自由なアプローチである。
推論は、ジェネリックモジュラー・マルコフ連鎖モンテカルロアルゴリズムによって行われる。
論文 参考訳(メタデータ) (2022-05-17T19:26:43Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Structured Reordering for Modeling Latent Alignments in Sequence
Transduction [86.94309120789396]
本稿では,分離可能な置換の辺りを正確に推定する効率的な動的プログラミングアルゴリズムを提案する。
結果のSeq2seqモデルは、合成問題やNLPタスクの標準モデルよりも体系的な一般化が優れている。
論文 参考訳(メタデータ) (2021-06-06T21:53:54Z) - Gaussian Process Latent Class Choice Models [7.992550355579791]
離散選択モデル(DCM)における確率的機械学習の非パラメトリッククラスを提案する。
提案モデルでは,GPを用いた行動同質クラスタ(ラテントクラス)に確率的に個人を割り当てる。
モデルは2つの異なるモード選択アプリケーションでテストされ、異なるLCCMベンチマークと比較される。
論文 参考訳(メタデータ) (2021-01-28T19:56:42Z) - BasisVAE: Translation-invariant feature-level clustering with
Variational Autoencoders [9.51828574518325]
変分オートエンコーダ(VAE)は、非線形次元削減のための柔軟でスケーラブルなフレームワークを提供する。
崩壊した変分推論スキームがBasisVAEのスケーラブルかつ効率的な推論にどのように寄与するかを示す。
論文 参考訳(メタデータ) (2020-03-06T23:10:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。