論文の概要: BINDy -- Bayesian identification of nonlinear dynamics with reversible-jump Markov-chain Monte-Carlo
- arxiv url: http://arxiv.org/abs/2408.08062v1
- Date: Thu, 15 Aug 2024 10:03:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 14:16:19.025917
- Title: BINDy -- Bayesian identification of nonlinear dynamics with reversible-jump Markov-chain Monte-Carlo
- Title(参考訳): BINDy -- 可逆ジャンプマルコフ鎖モンテカルロを持つ非線形ダイナミクスのベイズ的同定
- Authors: Max D. Champneys, Timothy J. Rogers,
- Abstract要約: モデルパーシモニーは、データ駆動型モデリングにおける重要な認識バイアスであり、解釈可能性を助け、過度な適合を防ぐのに役立つ。
非線形力学(SINDy)法のスパース同定は、データから直接複素力学のスパース表現を学習することができる。
SINDyの代替として,辞書学習システム識別のベイズ的新しい治療法が提案されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model parsimony is an important \emph{cognitive bias} in data-driven modelling that aids interpretability and helps to prevent over-fitting. Sparse identification of nonlinear dynamics (SINDy) methods are able to learn sparse representations of complex dynamics directly from data, given a basis of library functions. In this work, a novel Bayesian treatment of dictionary learning system identification, as an alternative to SINDy, is envisaged. The proposed method -- Bayesian identification of nonlinear dynamics (BINDy) -- is distinct from previous approaches in that it targets the full joint posterior distribution over both the terms in the library and their parameterisation in the model. This formulation confers the advantage that an arbitrary prior may be placed over the model structure to produce models that are sparse in the model space rather than in parameter space. Because this posterior is defined over parameter vectors that can change in dimension, the inference cannot be performed by standard techniques. Instead, a Gibbs sampler based on reversible-jump Markov-chain Monte-Carlo is proposed. BINDy is shown to compare favourably to ensemble SINDy in three benchmark case-studies. In particular, it is seen that the proposed method is better able to assign high probability to correct model terms.
- Abstract(参考訳): モデルパシモニーは、データ駆動型モデリングにおいて重要な‘emph{認識バイアス’であり、解釈可能性を助け、過度な適合を防ぐのに役立つ。
非線形力学(SINDy)手法のスパース同定は、ライブラリ関数の基底として、データから直接複素力学のスパース表現を学習することができる。
本研究では,SINDyの代替として,辞書学習システム識別のベイズ的手法を提案する。
提案手法 - 非線形力学のベイズ的同定(BINDy) - は、ライブラリ内の項とモデル内のパラメータ化の両方に対する完全な結合後部分布を対象とする従来の手法とは異なる。
この定式化は、任意の事前をモデル構造の上に配置して、パラメータ空間ではなくモデル空間内でスパースなモデルを生成するという利点を与える。
この後部は次元の変化が可能なパラメータベクトル上で定義されるので、推論は標準手法では実行できない。
代わりに、可逆ジャンプ型マルコフ鎖モンテカルロに基づくギブスサンプリング器が提案されている。
BINDyは3つのベンチマークケーススタディでSINDyをアンサンブルしている。
特に,提案手法はモデル項の修正に高い確率を割り当てる方がよいと考えられる。
関連論文リスト
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Meaning Representations from Trajectories in Autoregressive Models [106.63181745054571]
入力テキストを拡張可能なすべてのトラジェクトリの分布を考慮し,自己回帰言語モデルから意味表現を抽出する。
この戦略はプロンプトフリーであり、微調整は必要とせず、事前訓練された自己回帰モデルにも適用できる。
我々は,大規模なモデルから得られた表現が人間のアノテーションとよく一致し,意味的類似性タスクにおける他のゼロショットおよびプロンプトフリーメソッドよりも優れており,標準埋め込みが扱えないより複雑なエンタテインメントや包含タスクの解決に使用できることを実証的に示す。
論文 参考訳(メタデータ) (2023-10-23T04:35:58Z) - Bayesian Neural Network Inference via Implicit Models and the Posterior
Predictive Distribution [0.8122270502556371]
本稿では,ベイズニューラルネットワークのような複雑なモデルにおいて,近似ベイズ推論を行うための新しい手法を提案する。
このアプローチはMarkov Chain Monte Carloよりも大規模データに対してスケーラブルである。
これは、サロゲートや物理モデルのような応用に有用であると考えています。
論文 参考訳(メタデータ) (2022-09-06T02:43:19Z) - An Interpretable and Efficient Infinite-Order Vector Autoregressive
Model for High-Dimensional Time Series [1.4939176102916187]
本稿では,高次元時系列に対する新しいスパース無限次VARモデルを提案する。
このモデルによって得られたVARMA型力学の時間的・横断的な構造は別々に解釈できる。
統計的効率と解釈可能性の向上は、時間的情報をほとんど失わずに達成できる。
論文 参考訳(メタデータ) (2022-09-02T17:14:24Z) - Parsimony-Enhanced Sparse Bayesian Learning for Robust Discovery of
Partial Differential Equations [5.584060970507507]
Parsimony Enhanced Sparse Bayesian Learning (PeSBL) 法は非線形力学系の部分微分方程式 (PDE) を解析するために開発された。
数値ケーススタディの結果,多くの標準力学系のPDEをPeSBL法を用いて正確に同定できることが示唆された。
論文 参考訳(メタデータ) (2021-07-08T00:56:11Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Gaussian processes meet NeuralODEs: A Bayesian framework for learning
the dynamics of partially observed systems from scarce and noisy data [0.0]
本稿では,非線形力学系の部分的,雑音的,不規則な観測からベイズ系を同定する機械学習フレームワーク(GP-NODE)を提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
捕食者予備システム,システム生物学,50次元ヒューマンモーションダイナミクスシステムを含む提案GP-NODE法の有効性を示すために,一連の数値的研究を行った。
論文 参考訳(メタデータ) (2021-03-04T23:42:14Z) - Estimation of Switched Markov Polynomial NARX models [75.91002178647165]
非線形自己回帰(NARX)成分を特徴とするハイブリッド力学系のモデル群を同定する。
提案手法は, 特定の回帰器を持つ3つの非線形サブモデルからなるSMNARX問題に対して実証される。
論文 参考訳(メタデータ) (2020-09-29T15:00:47Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
本稿では,非線形力学系のノイズ,スパース,不規則な観測からベイズ系を同定する機械学習フレームワークを提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
スパーシティプロモーティングプリエントを用いることで、下層の潜在力学に対する解釈可能かつ同義的な表現の発見が可能になる。
論文 参考訳(メタデータ) (2020-04-15T00:51:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。