論文の概要: MambaNet: A Hybrid Neural Network for Predicting the NBA Playoffs
- arxiv url: http://arxiv.org/abs/2210.17060v1
- Date: Mon, 31 Oct 2022 04:37:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 18:20:53.653069
- Title: MambaNet: A Hybrid Neural Network for Predicting the NBA Playoffs
- Title(参考訳): mambanet:nbaのプレーオフを予測するハイブリッドニューラルネットワーク
- Authors: Reza Khanmohammadi and Sari Saba-Sadiya and Sina Esfandiarpour and
Tuka Alhanai and Mohammad M. Ghassemi
- Abstract要約: MambaNetは、チームとプレイヤーのゲーム統計の時系列を処理するハイブリッドニューラルネットワークアーキテクチャである。
提案手法は, AUC を 0.72 から 0.82 まで予測し, 最良性能のベースラインモデルをかなりの差で上回った。
- 参考スコア(独自算出の注目度): 5.366368559381279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present Mambanet: a hybrid neural network for predicting
the outcomes of Basketball games. Contrary to other studies, which focus
primarily on season games, this study investigates playoff games. MambaNet is a
hybrid neural network architecture that processes a time series of teams' and
players' game statistics and generates the probability of a team winning or
losing an NBA playoff match. In our approach, we utilize Feature Imitating
Networks to provide latent signal-processing feature representations of game
statistics to further process with convolutional, recurrent, and dense neural
layers. Three experiments using six different datasets are conducted to
evaluate the performance and generalizability of our architecture against a
wide range of previous studies. Our final method successfully predicted the AUC
from 0.72 to 0.82, beating the best-performing baseline models by a
considerable margin.
- Abstract(参考訳): 本稿では,バスケットボールの試合の結果を予測するためのハイブリッドニューラルネットワークであるmambanetを提案する。
シーズンゲームを中心とした他の研究とは対照的に,本研究はプレーオフゲームについて検討する。
MambaNetは、チームとプレーヤーのゲーム統計の時系列を処理し、NBAのプレーオフマッチに勝つか負けるかの確率を生成するハイブリッドニューラルネットワークアーキテクチャである。
本手法では,機能模倣ネットワークを用いてゲーム統計の潜在的信号処理特徴表現を提供し,畳み込み・再帰・密集した神経層でさらに処理を行う。
6つの異なるデータセットを用いた3つの実験を行い、アーキテクチャの性能と一般化性を評価する。
最終方法はaucを 0.72 から 0.82 に予測し、最高性能のベースラインモデルを打ち破った。
関連論文リスト
- Predicting soccer matches with complex networks and machine learning [0.0]
本研究の目的は,サッカーの試合結果を予測するための代替ツールとして,複雑なネットワークを利用することである。
通過ネットワークに基づくモデルは、一般的なマッチング統計を用いた従来のモデルと同じくらい効果的であった。
論文 参考訳(メタデータ) (2024-09-19T21:45:25Z) - Optimizing Offensive Gameplan in the National Basketball Association
with Machine Learning [0.0]
ORTG (Offensive Rating) はディーン・オリバーによって開発された。
本稿では,NBAのプレイタイプと統計ORTGの相関関係について検討した。
モデルの精度を正当化するために、次のステップはモデルの出力を最適化することであった。
論文 参考訳(メタデータ) (2023-08-13T22:03:35Z) - NBA2Vec: Dense feature representations of NBA players [0.0]
本稿では,各プレーヤの高密度特徴表現を抽出するWord2Vecに基づくニューラルネットワークモデルであるNBA2Vecを提案する。
NBA2Vecは、2017年のNBAプレイオフシリーズの結果を正確に予測する。
NBA2Vec埋め込みの今後の応用は、プレイヤーのスタイルを特徴付けることで、プレイヤーの獲得とコーチング決定のための予測モデルに革命をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-02-26T19:05:57Z) - Boosted Dynamic Neural Networks [53.559833501288146]
典型的なEDNNは、ネットワークバックボーンの異なる層に複数の予測ヘッドを持つ。
モデルを最適化するために、これらの予測ヘッドとネットワークバックボーンは、トレーニングデータのバッチ毎にトレーニングされる。
トレーニングと2つのフェーズでのインプットの異なるテストは、トレーニングとデータ分散のテストのミスマッチを引き起こす。
EDNNを勾配強化にインスパイアされた付加モデルとして定式化し、モデルを効果的に最適化するための複数のトレーニング手法を提案する。
論文 参考訳(メタデータ) (2022-11-30T04:23:12Z) - GCN-WP -- Semi-Supervised Graph Convolutional Networks for Win
Prediction in Esports [84.55775845090542]
本稿では,グラフ畳み込みネットワークに基づくエスポートに対する半教師付き勝利予測モデルを提案する。
GCN-WPはマッチとプレーヤに関する30以上の機能を統合し、近隣のゲームを分類するためにグラフ畳み込みを使用している。
本モデルは,LLの機械学習やスキル評価モデルと比較して,最先端の予測精度を実現する。
論文 参考訳(メタデータ) (2022-07-26T21:38:07Z) - Machine Learning in Sports: A Case Study on Using Explainable Models for
Predicting Outcomes of Volleyball Matches [0.0]
本稿では,ブラジルバレーボールリーグ(SuperLiga)における試合結果を予測するための2相説明可能な人工知能(XAI)アプローチについて検討する。
第1フェーズでは、解釈可能なルールベースのMLモデルを直接使用し、モデルの振る舞いをグローバルに理解する。
第2フェーズでは,SVM(Support Vector Machine)やDNN(Deep Neural Network)といった非線形モデルを構築し,バレーボールの試合結果の予測性能を得る。
論文 参考訳(メタデータ) (2022-06-18T18:09:15Z) - ESCHER: Eschewing Importance Sampling in Games by Computing a History
Value Function to Estimate Regret [97.73233271730616]
超大型ゲームにおけるナッシュ均衡の近似手法 : ニューラルネットワークを用いて近似最適ポリシー(戦略)を学習する
DREAMは,モンテカルロCFR(MCCFR)から受け継がれた重要なサンプリング項により,極めて高いばらつきを有すると推定された後悔のターゲット上で,ニューラルネットワークを訓練する。
ESCHERの深層学習バージョンは、DREAMとニューラル・フィクション・セルフプレイ(NFSP)の先行状態よりも優れており、ゲームサイズが大きくなるにつれて、その違いは劇的になる。
論文 参考訳(メタデータ) (2022-06-08T18:43:45Z) - A Battle of Network Structures: An Empirical Study of CNN, Transformer,
and MLP [121.35904748477421]
畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンのための支配的なディープニューラルネットワーク(DNN)アーキテクチャである。
トランスフォーマーとマルチ層パーセプトロン(MLP)ベースのモデル(Vision TransformerやVision-Mixer)が新しいトレンドを導い始めた。
本稿では,これらのDNN構造について実証的研究を行い,それぞれの長所と短所を理解しようとする。
論文 参考訳(メタデータ) (2021-08-30T06:09:02Z) - Machine learning models for DOTA 2 outcomes prediction [8.388178167818635]
本研究は,Dota 2 MOBAゲームの結果を特定するための予測機械学習モデルとディープラーニングモデルの構築に主に焦点をあてる。
リニア回帰(LR)、ニューラルネットワーク(NN)、リカレントニューラルネットワーク(LSTM)の3つのモデルについて検討・比較を行った。
論文 参考訳(メタデータ) (2021-06-03T12:10:26Z) - Interpretable Real-Time Win Prediction for Honor of Kings, a Popular
Mobile MOBA Esport [51.20042288437171]
本研究では,2段階空間時間ネットワーク(TSSTN)を提案する。
実世界のライブストリーミングシナリオにおける実験結果と応用により,提案したTSSTNモデルは予測精度と解釈可能性の両方において有効であることが示された。
論文 参考訳(メタデータ) (2020-08-14T12:00:58Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
サンプル選択とランキングの両方を導くことで、アーキテクチャとトレーニングのレシピを共同でスコアする精度予測器を提案する。
高速な進化的検索をCPU分で実行し、さまざまなリソース制約に対するアーキテクチャと準備のペアを生成します。
FBNetV3は最先端のコンパクトニューラルネットワークのファミリーを構成しており、自動と手動で設計された競合より優れている。
論文 参考訳(メタデータ) (2020-06-03T05:20:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。